Supplementary Material

Functions, spatial-scale representation and monitoring items of different type of monitoring stations in the PRD regional 3-D network

<table>
<thead>
<tr>
<th>Type</th>
<th>Spatial Representation (km)</th>
<th>Functions</th>
<th>Observables</th>
</tr>
</thead>
</table>
| Background | 1000 | ➢ Indicate the background air quality in a less affected anthropogenic activities
➢ Reflect the air quality characteristics at spatial scale of 1000 km
➢ Evaluate the effectiveness of control measures implemented at regional or national level | Currently comprising of SO\textsubscript{2}, NO-NO\textsubscript{2}-NO\textsubscript{x}, O\textsubscript{3}, CO, PM\textsubscript{10}, PM\textsubscript{2.5} and meteorological parametersa; will progressively introduce visibility, light absorption and scattering of particulate matters, acid deposition, VOCs, GHGs, inorganic and organic components of particulate matters |
| Supersites | 100 | ➢ Investigate regional complex air pollution phenomenon, formation processes and mechanism
➢ Investigate the synergistic effects between ecosystem and health
➢ Reflect and characterize the air quality at spatial scale of 100km
➢ Serve as a nurturing ground and capacity building on monitoring experience of advance instrumentation technique development, QA/QC, etc.
➢ Evaluate the effectiveness of control measures at regional scale | SO\textsubscript{2}, NO/NO\textsubscript{2}/NO\textsubscript{x}, NO/NO\textsubscript{y}, CO, O\textsubscript{3}, H\textsubscript{2}O\textsubscript{2}, CH\textsubscript{4}, NMHC, VOC, PAN, ATOF/MS, PM\textsubscript{1}-PM\textsubscript{2.5}, PM\textsubscript{10}, physical properties (e.g., size, distribution) and chemical (inorganic and organic species) components of PM\textsubscript{2.5} and PM\textsubscript{10}, EC/OC, light scattering and absorption of particulate matters, LIDAR, wind profiles, J(NO\textsubscript{2})-J(O\textsubscript{3}), visibility, MOUDI and meteorological parametersa |
| Rural | 10–100 | ➢ Assess the compliance of air quality at rural scale
➢ Reflect and characterize the air quality at spatial scale from several km to 100 km
➢ Evaluate the effectiveness of control measures a more local scale | SO\textsubscript{2}, NO/NO\textsubscript{2}-NO\textsubscript{x}, O\textsubscript{3}, PM\textsubscript{10}, meteorological parametersa |
| Regional | 10–100 | ➢ Assess the compliance of regional air quality
➢ Reflect the air pollution characteristics at regional scale
➢ Evaluate the effectiveness of control measures in regional scale | SO\textsubscript{2}, NO/NO\textsubscript{2}-NO\textsubscript{x}, CO, O\textsubscript{3}, PM\textsubscript{10}, PM\textsubscript{2.5}, PM\textsubscript{1}, NMHC, black carbon, visibility, meteorological parametersa |
| Urban | 1–10 | ➢ Assess the air quality at a densely populated area
➢ Reflect the air pollution characteristics at a more local scale between 1 km and 10 km
➢ Evaluate the effectiveness of control measures in urban cities | SO\textsubscript{2}, NO/NO\textsubscript{2}-NO\textsubscript{x}, O\textsubscript{3}, PM\textsubscript{10}, PM\textsubscript{2.5}, visibility, meteorological parametersa |
| Roadside | 0.01–0.1 | ➢ Assess air quality at high traffic flow volume
➢ Reflect and characterize the air quality at micro-scale from 10 m to 100 m | SO\textsubscript{2}, NO/NO\textsubscript{2}-NO\textsubscript{x}, O\textsubscript{3}, PM\textsubscript{10}, PM\textsubscript{2.5}, visibility, meteorological parametersa |
| Special purpose | On a need basis | ➢ Based on air quality management needs, special purpose monitoring shall include complex air quality monitoring such as acid deposition, sandstorm, photochemical air pollution, regional haze, GHGs, toxic substances such as heavy metals | On a need basis |

aMeteorological parameters include temperature, relative humidity, wind direction and speed, solar radiation, rainfall, etc.
Abbreviations

ATOF/MS - Aerosol Time of Flight/Mass Spectrometer
CH₄ - methane
CO - carbon monoxide
EC/OC - elemental carbon/organic carbon
GHGs - greenhouse gases
H₂O₂ - hydrogen peroxide
J(NO₂) - photolysis frequency of nitrogen dioxide
J(O₃) - photolysis frequency of ozone
LIDAR - Light Detection and Ranging
MOUDI - Micro-Orifice Uniform Deposition Impactors
NMHC - non-methane hydrocarbon
NO/NO₂/NOₓ/NO₃ - nitrogen monoxide/nitrogen dioxide/nitrogen oxides/total reactive nitrogen
O₃ - ozone
PAN - peroxyacyl nitrates
PM₁ - particulate matter with aerodynamic diameter of up to 1 micrometer
PM₁₅ - particulate matter with aerodynamic diameter of up to 2.5 micrometer
PM₁₀ - particulate matter with aerodynamic diameter of up to 10 micrometer
SO₂ - sulfur dioxide
VOC - volatile organic compound