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ABSTRACT 
 

A prognostic approach is proposed based on a fuzzy-logic model to estimate suspended dust concentrations, related to 
PM10, in a specific residential area in Kuwait with high traffic and industrial influences. Seven input variables, including 
four important meteorological parameters (wind speed, wind direction, relative humidity and solar radiation) and the 
ambient concentrations of three gaseous pollutants (methane, carbon monoxide and ozone) were fuzzified using a sytem 
with a graphical user interface (GUI) and an artificial intelligence-based approach. Trapezoidal membership functions with 
ten and fifteen levels were employed for the fuzzy subsets of each model variable. A Mamdani-type fuzzy inference 
system (FIS) was developed to introduce a total of 146 rules in the IF-THEN format. The product (prod) and the centre of 
gravity (centroid) methods were performed as the inference operator and defuzzification methods, respectively, for the 
proposed FIS. The results obtained using uzzy-logic were compared with the outputs of an exponential regression model. 
The predictive performances of the models were compared based on various descriptive statistical indicators, and the 
proposed method was tested against additional observed data. The prognostic model presented in this work produced very 
small deviations from the actual results, and showed better predictive performance than the other model with regard to 
forecasting PM10 levels, with a very high determination coefficient of over 0.99.  
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INTRODUCTION 
 

Particulate matter (PM) is one of the most prevalent 
atmospheric pollutants in urban atmosphere. It consists of 
suspended solids and liquids, and it comes from a variety 
of natural and anthropogenic sources. Some particles are 
directly emitted in the air from vehicles and industries, 
whereas other particles are indirectly formed by the chemical 
change of combustion gases in the presence of sunlight and 
water vapor.  

Air quality problem, related to PM10 has become a topic 
of considerable importance. The term PM10 is refereed to 
atmospheric particles with an aerodynamic diameter of less 
than 10 μm. These small particles are targeted because they 
can easily penetrate into the deepest regions of the lungs. 
The epidemiological studies indicated that exposure to 
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PM10 induces an increase of lung cancer, morbidity and 
cardiopulmonary mortality (Nel, 2005; Bhaskaran et al., 
2011). Dockery et al. (1993) were the first to report 
significant association between PM10 and mortality. Pope 
et al. (1995), in another study, also linked PM10 to 
cardiopulmonary and lung cancer mortality. Studies also 
indicated that there is a significant association between PM10 
concentrations and the medical visits for lower respiratory 
symptoms in children and upper respiratory in the elderly 
(Ostro et al., 2001). Other environmental effects of particulate 
matter are visibility reduction, acidic precipitation, and the 
transport of pollutants from industrial regions to remote 
and pristine areas (Marshall et al., 1986; Wolff et al., 1986; 
Swietlicki et al., 1996). They also have been suggested to 
be responsible for possible global climate change through 
their direct and indirect role in the earth’s radiation balance 
(Study of Critical Environmental Problems (SCEP), 1970; 
Charlson et al., 1992) and possible modification of cloud 
processes (Barret et al., 1979; Parungo et al., 1979; Parungo 
et al., 1982). 

PM10 consists of many different compounds and has a 
variety of primary and secondary sources (Wilson and Suh, 
1997). This makes prediction and control of PM10 a difficult 
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mission. According to Grivas and Chaloulakou (2006), the 
prediction of particulate concentrations is more difficult as 
compared to the modeling of gaseous pollutants. This is 
due to the complexity of the processes which control their 
formation, transportation, and removal of aerosol in the 
atmosphere. It is expected that the input variables which 
are responsible for the PM10 levels in the air may differ 
from one location to another. The identification which sources 
or chemical processes are associated with PM10 levels in a 
certain location can be challenging. Therefore, the selection 
of the right input variables for a particular location is crucial 
and it should be done before any modeling can be made. 
Studies reported in the literature showed that meteorology 
and ambient concentrations of gaseous pollutants play a 
very important role in the behavior of PM10. In this regard, 
Van der Wal and Janssen (2000) showed that 45% of the 
variance of PM10 concentrations may be explained by the 
changes in wind direction, temperature, and durations of 
precipitations. Other studies found that PM10 concentrations 
in ambient air are significantly affected by wind speed, 
wind direction, solar radiation, relative humidity, rainfall, 
boundary layer depth, precipitation, temperature and number 
of consecutive days with synoptic weather patterns (Alpert 
et al., 1998; Monn, 2001; Giri et al., 2008; Barmpadimos et 
al., 2012). Furthermore, the ambient concentrations of some 
gaseous pollutants such as ozone (O3), carbon monoxide 
(CO) and sulfur dioxide (SO2) also have their roles in the 
behavior of PM10 (Rizzo et al., 2002).  

In order to curb the increasing deterioration of ambient air 
quality, urgent risk assessment and proper risk management 
tools are required to ensure a robust and resilient control of 
PM10 levels. Considering the complicated inter-relationships 
among a number of system factors in the dispersion and 
transport of atmospheric pollutants under several 
meteorological conditions, mathematical models have 
become essential tools to develop early-warning and control 
strategies, as well as to investigate future emission scenarios. 
Although statistical models may be able to establish a 
relationship between the input and the output variables 
without detailing the causes and effects in the formation of 
pollutants, however, they are not capable of capturing the 
inherent non-linear nature of the problem and forecasting 
short-term pollution levels (Agirre-Basurko et al., 2006; 
Barai et al., 2007; Akkoyunlu et al., 2010). Since the number 
of meteorological and pollution parameters implies high-
dimensional input space and high computational capacity, 
it is believed that artificial intelligence-based techniques 
may provide a good alternative to traditional techniques 
due to their speed, robustness and non-linear characteristics 
(Yetilmezsoy and Sapci-Zengin, 2009; Akkoyunlu et al., 
2010). 

Because of their non-parametric regression capabilities, 
generalization properties and easiness of working with 
high-dimensional data, several artificial intelligence-based 
methods, such as artificial neural networks (Abdul-Wahab 
and Al-Alawi, 2002; Yetilmezsoy, 2006; Yetilmezsoy and 
Saral, 2007; Akkoyunlu et al., 2010) and fuzzy-logic/neuro-
fuzzy (Nunnari et al., 2004; Yildirim and Bayramoglu, 2006; 
Carnevale et al., 2009; Noori et al., 2010) methodology, 

have recently been utilized in the modeling of various real-
life problems in air pollution field. There have also been other 
specific studies reporting the advantages and adaptability 
properties of artificial intelligence-based models for the 
prediction of daily and/or hourly particulate matter (PM2.5 
and PM10) emissions in many urban and residential areas 
(Chaloulakou et al., 2003; Chelani, 2005; Grivas and 
Chaloulakou, 2006; Karaca et al., 2009).  

Considering the non-linear nature of PM10-based air 
pollution problems, a number of attempts in developing an 
artificial intelligence-based control of PM10 emissions may 
help to provide a continuous early-warning strategy without 
requiring a complex formulation and laborious parameter 
estimation procedures. Therefore, implementation of a 
knowledge-based methodology may be regarded as a 
particular field of investigation for controlling of PM10 
emissions that are necessary to mitigate one of the major 
public health issues associated with exposures to high 
concentrations of atmospheric particles. 

Based on the above-mentioned facts, the specific 
objectives of this study were: (1) to estimate suspended dust 
concentrations by means of a new fuzzy-logic-based model 
consisted of several important meteorological parameters 
(i.e., wind speed, wind direction, relative humidity and solar 
radiation) and ambient concentrations of some gaseous 
pollutants (i.e., methane, carbon monoxide and ozone) 
affecting PM10 concentrations; (2) to compare the proposed 
artificial intelligence-based approach with the conventional 
multiple regression-based method for various descriptive 
statistical indicators; and (3) to verify the validity of the 
proposed prognostic methodology by several testing data.  
 
EXPERIMENTAL 
 
Description of Study Domain 

Khaldiya (Al-Khaldiyah) residential area is a suburb of 
Kuwait City and it is located in the boundaries of Al-
Asimah Governorate in Kuwait (Fig. 1). The center of the 
area is situated at the latitude 29°19′32′′ north and the 
longitude 47°57′47′′ east. The Shuwaikh industrial area 
lies towards the western boundaries of Khaldiya, Yarmouk 
subarea lies to the south, Kaifan subarea is located northern 
boundaries of the area, while Adailiyah subarea marks the 
eastern boundary.  

Relatively heavy traffic movement surrounds the area of 
study at Khaldiya residential area and therefore it is mainly 
affected by the air pollutants that are emitted from the traffic 
load in view of the proximity of major highways, such as 
the Third and the Fourth Ring Roads and the International 
Airport Road (Abdul-Wahab and Al-Alawi, 2002). The 
monitoring site is also situated downwind from the Shuwaikh 
industrial area and the Shuwaikh power plant. Hence, the 
monitoring site can also be affected by the Shuwaikh 
industrial area and the Shuwaikh power plant in case the 
levels of air pollutants released from them are significant. It 
should be noted that Shuwaikh Industrial Area is known as 
the industrial section of Kuwait as most manufacturers can 
be found in it. Car repairs are mostly located in this part of 
Kuwait. Also, many car dealerships are located in this area.  
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Fig. 1. Location of Khaldiya residential area in relation to Kuwait City and coordinates of the mobile air pollution monitoring 
laboratory situated in the area. 

 

The climate is in the region typically arid with very hot 
summers and relatively cold and dry winters. Summer 
season, which lasts from May to September, is extremely 
hot and dry with temperatures easily exceeding 45°C during 
daytime. Winter season, from November through February, 
is cool with some precipitation and average temperatures 
around 13°C with extremes from –2°C to 27°C. Annual 
rainfall averages less than 127 mm and occurs mainly 
between October and April. The spring season in March is 
warm and pleasant with occasional thunderstorms (Yassin 
and Almouqatea, 2010). Dust and sandstorms are also 
common throughout the year. They are more frequent in 
the winter months and in midsummer (Abdul-Wahab and 
Al-Alawi, 2002). The frequent winds from the northwest are 
cool in winter and spring and hot in summer. Southeasterly 
winds, usually hot and damp, spring up between July and 
October whilst hot and dry south winds prevail in spring 
and early summer (Yassin and Almouqatea, 2010).  

Considering the above-mentioned facts, investigating 
PM10 concentrations in Khaldiya residential area is very 
vital to predict environmental changes and to study future 
scenarios that include the impacts of changing populations 
and of new commercial developments.  

 
Collection of the Data 

Ambient air quality data and meteorological conditions 
were recorded every five minutes using an air pollution 
mobile monitoring station located at Khaldiya residential 
area in the state of Kuwait. These 5-min data were used to 

determine the variations of PM10 with the other pollutants 
and with meteorological parameters. The mobile station 
was operated for 24 hours on a daily basis in July (summer 
period). Sampling and analysis were conducted automatically 
and subsequently and data were transferred to the data 
station. The station was monitored on a daily basis by 
examination of the collected data. In addition, all equipment 
were recalibrated and aligned on a monthly basis. 

The location of the air pollution mobile monitoring 
station (29°19′20′′N, 48°58′18′′E) was selected as the 
sampling site on the basis of availability of power and 
security and topography of the area. Care was taken that no 
high buildings or trees were present for 500 m of the site in 
any direction. The reason for this condition is to eliminate 
the effect instrumentation and measurements. 

In terms of its operation, the mobile laboratory is 
characterized by the following: sampling inlets were 
located on top of the laboratory 10 m above the ground; all 
the monitors were controlled by an intelligent data logger; 
automatic zero and span calibrations were performed using 
a calibration gas once every 23 hours (thus the same hourly 
data were not lost each day). 

The mobile laboratory has the capability of measuring 
18 variables, which include concentrations of methane, non-
methane hydrocarbons, nitrogen oxides (NO and NO2), 
sulfur dioxide, carbon oxides (CO and CO2), hydrogen 
sulfide, ammonia, ozone, and total dust. In addition, several 
meteorological parameters, such as temperature, pressure, 
humidity, solar radiation, wind direction, and wind speed, 
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can be measured by the mobile laboratory. 
Collected data were processed on a monthly basis in 

order to assess consistency of measurements. Analysis 
included inspection of spot readings in order to locate and 
eliminate measurements corresponding to calibration and 
adjustment periods. In addition, a quality check of the data 
was performed by examining all data in graphical form. 
Subsequently, hourly averages and spot minimums and 
maximums were generated. The number of complete data 
points with values for all 8 variables recorded was 1096. 
 
Instrumentation and Measurements 

The air pollution mobile monitoring station was fitted 
with chemical monitors and real-time instruments for 
assessing pollutants concentrations with a high sensitivity 
and specificity. In the present study, gaseous pollutants 
measured include methane (CH4), carbon monoxide (CO) 
and ozone (O3). Meteorological parameters monitored 
simultaneously consisted of wind speed, wind direction, 
relative humidity and solar radiation.  

Methane (CH4) was measured by gas chromatography 
using a flame ionization detector (Model MAS-1030A, Mine 
Safety Appliances Company) which had a detection limit 
of 0.05 ppm. Carbon monoxide (CO) concentrations were 
measured by using a non-dispersive infrared (IR) analyzer 
(Model 48 of Thermo Environmental Instruments) with a 
minimum detectable limit of 0.1 ppm and a measuring range 
up to 20 ppm. Ozone (O3) concentrations were measured by 
using a non-dispersive ultraviolet (UV) photometer (Model 
ML 9812, Monitors Labs) with a measuring range of 1000 
ppb. Suspended dust (PM10) was measured gravimetrically 
(TEOM® Series 1400a, Thermo Electron Corporation). 
This was a real-time device used for assessing particulate 
concentration for sizes smaller than 10 μm in diameter 
(Abdul-Wahab and Al-Alawi, 2002).  

Sensor for solar radiation enabled readings with an 
accuracy of 0.02 kW/m2 and a range of 0.0 to 2 kW/m2. 
Sensor for relative humidity was calibrated for measurements 

with an accuracy of 3% and a range of 0.0 to 100%. Sensor 
for wind speed had an accuracy of 0.2 m/s and a range of 
0.4 to 76 m/s. 

Furthermore, sensor for wind direction provided 
measurements with an accuracy of 5° and a range of 0.0 to 
360°. Other details of the mobile laboratory’s meteorological 
sensors can be found in previous studies (Abdul-Wahab et 
al., 1996, Abdul-Wahab et al., 2000, Elkamel et al., 2001). 
Table 1 summarizes methods, ranges and accuracy of the 
measurements conducted in the mobile laboratory. Variations 
of the model components considered in the proposed 
prognostic approach are depicted in Fig. 2. 

 
Variation of PM10 Levels during the Study Period 

It is known that atmospheric pollutants and meteorological 
conditions can exhibit remarkable seasonal varitions. During 
the measurement period, PM10 levels ranged from 35 to 
2257.42 μg/m3, with an average concentration of 183.55 
μg/m3, as depicted in Fig. 2. On the basis of the complete 
PM10 data set, about 94.4% of the overall suspended dust 
concentrations was recorded to be lower than 500 μg/m3. 
While the maximum PM10 concentration observed during 
the study period was 2257.42 μg/m3, some local peaks 
between 892.50–1823.14 μg/m3 were also recorded during 
the study period. These peaks refer to some construction 
activities in the area surrounding the monitoring site 
during the investigation period. 

 
Fuzzy-Logic Methodology  

In the fuzzy-logic-based methodology (Zadeh, 1965), 
there are five parts of the fuzzy inference process: 
fuzzification of the input variables, application of the fuzzy 
operator (AND or OR) in the antecedent, implication from 
the antecedent to the consequent, aggregation of the 
consequents across the rules, and defuzzification. In the 
fuzzification step, numerical inputs and outputs (crisp 
variables) are converted into linguistic terms (i.e., A, B, C, 
etc.) or some specific adjectives (i.e., cold, warm, hot, low,

 

Table 1. Methods, ranges and accuracy of the measurements conducted in the mobile laboratory. 

Constituent Method Model of device 
Measurement 

range 
Accuracy or 

detection limit
Air pollutants 

Methane (CH4) Gas chromatography (Flame 
ionization detector) 

Model MAS-1030A 
(Mine Safety Appliances 
Company) 

0.0–20 ppm ± 0.05 ppm 

Carbon monoxide (CO) Non-dispersive infrared (IR) 
absorption 

Model 48 (Thermo 
Environmental 
Instruments) 

0.0–20 ppm ± 0.1 ppm 

Ozone (O3) Non-dispersive ultraviolet (UV) 
photometry 

Model ML 9812 
(Monitors Labs) 

0.0–1000 ppb ± 1 ppb 

Suspended dust (PM10) Gravimetric (filter-based mass 
monitor) 

TEOM® Series 1400a 
(Thermo Electron Corp.)

(< 10 μm in 
diameter 

± 5 μg/m3 

Meteorological parameters 
Wind speed (WS) Speedometer with a reed switch Aanderaa model 2740 0.4 to 76 m/s ± 0.2 m/s 
Wind direction (WD) Compass with potentiometer Aanderaa model 2750 0.0 to 360° ± 5° 
Relative humidity (RH) Capacitive polymer Aanderaa model 3445 0.0 to 100% ± 3% 
Solar radiation (SOLAR) High sensitive thermistor bridge Aanderaa model 2770 0.0 to 2 kW/m2 ± 0.02 kW/m2 
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Fig. 2. Variation of the model components. 

 

high, big, small, etc.) according to the corresponding degrees 
and numbers of specific membership functions used in the 
fuzzy inference system (FIS) (Altunkaynak et al., 2005; 
Yetilmezsoy, 2012). The input is always a crisp numerical 

value of the input variable (i.e., in the present case, for 
wind speed (WS), the interval between 0.82 and 3.73 m/s) 
and the output is a fuzzified degree of membership in the 
qualifying linguistic set (always the interval between 0 and 
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1). Once the inputs have been fuzzified, the fuzzy operator 
is applied to obtain a number that represents the result of 
the antecedent for a given rule. This number will then be 
applied to the output function. In the FIS, two built-in 
AND methods (min (minimum) and prod (product)) and 
two built-in OR methods (max (maximum) and probor (the 
probabilistic OR method)) are basically performed (Rubens, 
2006).  

Once proper weighting (a number between 0 and 1) has 
been assigned to each rule, the implication method is 
implemented in the third step. The input of this process is a 
single number given by the antecedent, and the output is a 
fuzzy set represented by a specific membership function. For 
the implication process, two built-in methods are basically 
supported by the FIS, and they are the same functions that 
are used by the AND method: min (minimum), which 
truncates the output fuzzy set, and prod (product), which 
scales the output fuzzy set. 

Since decision is based on all of the rules in the FIS, the 
rules are combined to make the decision in the fouth step. 
Aggregation is the process by which the fuzzy sets that 
represent the outputs of each rule are combined into a 
single fuzzy set. The input of the aggregation process is the 
list of fuzzy sets that represent the outputs of each rule. 
There are a number of different aggregation methods (i.e., 
max (maximum), sum (simply the sum of each rule's output 
set), probor, etc.) supported by the FIS (Rubens, 2006). 

In the fifth and final step, fuzzy set is defuzzified in 
order to resolve a single output value from the set. In this 
process, linguistic results obtained from the FIS are 
transformed into a crisp numerical outputs (real values of 
variables) based on the predefined fuzzy rules in the fuzzy 
rule base (Biyikoglu et al., 2005; Kusan et al., 2010). 
Briefly, the input for the defuzzification process is the 
aggregated output fuzzy set and the output is a single 
number. In the relevant literature, several defuzzification 
techniques, such as centre of gravity (COG or centroid), 
bisector of area, mean of maxima, leftmost maximum, 
rightmost maximum, have been reported (Jantzen, 1999; 
Rubens, 2006). 

In this study, the product (prod) technique was conducted 
as the inference operator due to its better performance in 
collection of all the relations among inputs and outputs 
fuzzy sets in the fuzzy rule base (Turkdogan-Aydinol and 
Yetilmezsoy, 2010; Yetilmezsoy et al., 2012; Yetilmezsoy, 
2012). Moreover, the sum operator was used for the 
aggregation method implemented in the proposed FIS, as 
similarly performed in the previous studies (Turkdogan-
Aydinol and Yetilmezsoy, 2010; Yetilmezsoy et al., 2012; 
Yetilmezsoy, 2012). Furthermore, centre of gravity (COG 
or centroid) method which is the most commonly used 
defuzzification technique was employed as conducted in 
several fuzzy-logic-based studies (Akkurt et al., 2004; 
Sadiq et al., 2004; Altunkaynak et al., 2005; Turkdogan-
Aydinol and Yetilmezsoy, 2010; Yetilmezsoy et al., 2012; 
Yetilmezsoy, 2012). Considering the above-mentioned 
steps, a detailed schematic of the proposed prognostic 
approach to forecast PM10 levels in the Khaldiya area of 
Kuwait is illustrated in Fig. 3. 

Selection of Membership Functions 
In the fuzzy-logic-based models, the shape of membership 

functions of fuzzy sets can be triangular, trapezoidal, bell-
shaped, sigmoidal, or another appropriate form, depending 
on the nature of the system being studied. Among them, 
triangular- and trapezoidal- shaped membership functions 
are predominant in current applications of fuzzy set theory, 
due to their simplicity in both design and implementation 
based on little information (Rihani et al., 2009; Yetilmezsoy, 
2012, Yetilmezsoy et al., 2012). In this regard, several 
combinations of triangular (trimf) and trapezoidal (trapmf) 
shaped membership functions were pre-trained with 
different levels (i.e., 8, 10 and 15) to investigate the best-
fit fuzzy-logic model structure the present study. The 
measured data collected from Khaldiya residential area 
were arbitrarily classified into different fuzzy set categories 
with respective minimum and maximum values of model 
variables. Then, different scalar ranges of both triangular 
and trapezoidal membership functions were tested until the 
satisfactory outputs were obtained with respect to the set of 
rules used in the FIS, as similarly conducted in previous 
studies (Mitra et al., 1998; Turkdogan-Aydinol and 
Yetilmezsoy, 2010; Yetilmezsoy et al., 2012; Yetilmezsoy, 
2012). Results of the preliminary analysis indicated that 
trapezoidal shaped membership functions with ten levels 
for the input variables and fifteen levels for the output 
variable demonstrated the optimum prediction performance 
in estimation of PM levels at the studied area.  

 
Fuzzification of Input and Output Variables  

In this study, the FIS (Fuzzy Inference System) Editor 
GUI (graphical user interface) in the Fuzzy Logic Toolbox 
within the framework of MATLAB® V7.0 (The MathWorks, 
Inc., USA, R14) software, running on a Pentium® 4 CPU 
(Intel® Atom™ Processor 3.00 GHz, 480 MB of RAM) 
PC, was used for modeling and simulation purposes. In the 
computational analysis, input variables (wind speed, wind 
direction, relative humidity and solar radiation, methane, 
carbon monoxide and ozone) and the output variable 
(suspended dust concentration) were built by using a 
Mamdani-type FIS Editor, and fuzzified with ten and fifteen 
trapezoidal membership functions, respectively. Fig. 4 
shows the input and output variables on the MATLAB® 
numeric computing environment. 

Methane (CH4) concentration ranged from 1.617 to 2.083 
ppm in X-axis. Fig. 5(a) depicts the shape and range of each 
level for the first input variable. Carbon monoxide (CO) 
concentration, the second input variable, ranged from 0.205 
to 7.063 ppm, and the shape and range of its membership 
functions are illustrated in Fig. 5(b). Ozone (O3) concentration 
and Wind speed (WS), considered as the seventh and the 
fourth input variables, ranged from 1.5 to 97.54 ppb, and 
from 0.82 to 3.73 m/s, respectively (Fig. 5(c) and Fig. 6(a)). 
Other input variables were fuzzified in the following ranges: 
Wind direction (WD) = 58.41–300.9°, relative humidity 
(RH) = 10.77–38.69% and solar energy (SOLAR) = 0.038–
0.875 kW/m2. Shapes and ranges of trapezoidal membership 
functions for these input variables (WD, RH and SOLAR) 
are depicted in Fig. 6(b), Fig. 6(c) and Fig. 6(d). 
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Fig. 3. A detailed flowchart of the MISO fuzzy-logic methodology implemented in this study. 

 

Suspended dust concentration (PM10) being the output 
variable of the proposed fuzzy-logic model ranged from 35 
to 2257.42 μg/m3, as shown in Fig. 7. According to the 
variation of the output data, ten of trapezoidal shaped 
membership functions (from A to J) were restricted into 
narrow ranges compared to the remaining five membership 
functions (from K to O). This enabled to make better 
predictions on the suspended dust concentrations lower than 
500 μg/m3. Table 2 summarizes the number of trapezoidal 
membership functions (trapmf) and their ranks, for each of 
the input and output variables considered in the present 
fuzzy-logic-based model. 

In order to simplify processing of the implemented rules, 
present fuzzy set categories were defined in the form 

letters (i.e., A, B, C, etc.) instead of long definitions such 
as moderately low, low, moderate, moderately high, high, 
very high, etc. In this regard, each input variable had ten 
trapezoidal shaped membership functions namely A, B, C, 
D, E, F, G, H, I and J. Likewise, the output variable 
consisted of fifteen trapezoidal shaped membership functions  
namely A, B, C, D, E, F, G, H, I, J, K, L, M, N and O. For 
instance, according to the ranges and codes given in Table 
1, an experimental set of “methane concentration = 1.648 
ppm, carbon monoxide concentration = 0.893 ppm, wind 
peed = 1.99 m/s, wind direction = 261.57°, relative humidity 
= 14.33%, solar energy = 0.6955 kW/m2 and ozone 
concentration = 41.29 ppb” was coded as “A, B, D, I, B, H, 
E and J”, respectively. Based on both developed fuzzy set
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Fig. 4. Input and output variables considered for the proposed fuzzy inference system (FIS). 

 

categories and ranges of the existing measured data, a total 
of 146 rules were established in the IF-THEN format by 
using the Fuzzy Rule Editor for the best-fit model structure 
(trapezoidal shaped membership functions with ten levels 
for the input variables and fifteen levels for the output 
variable). For example, Table 3 presents the rule base of 
25 rule sets randomly selected from the overall fuzzy sets 
built within the framework of MATLAB® software.  

As mentioned above, fuzzy-logic-based models, called 
fuzzy inference systems (FIS), consist of a number of 
conditional "IF-THEN" rules. Although there are no 
universally accepted criteria that can be applied in all 
cases, for the designer who understands the system, these 
rules are easy to write, and as many rules as necessary can 
be supplied to describe the system adequately. However, the 
number of induced rules may become enormous and the rule 
description can be is complex because of the number of 
variables. On the other hand, the rules will be easier to 
interpret if they are defined by the most influential variables 
and the system behavior will be easier to understand as the 
number of rules is getting smaller. Therefore, variable 
selection and rule reduction are two important steps of the 
rule generation process (Guillaume, 2001). 

 
Multiple Regression-Based Model  

In addition to fuzzy-logic approach, a multiple regression-
based model was also derived to appraise the performance 
of the conventional regression approach on forecasting of 
suspended dust concentration. For comparative purpose, 

the measured data were evaluated by a multiple regression 
software package (DataFit® V8.1.69, Copyright© 1995-
2005, Oakdale Engineering, PA, RC167), containing 298 
two-dimensional (2D) and 242 three-dimensional (3D) 
non-linear regression models. The regression analysis was 
performed based on the Levenberg-Marquardt method with 
double precision, as similarly done in several studies of the 
first author (Yetilmezsoy, 2007; Yetilmezsoy and Saral, 
2007; Yetilmezsoy and Sapci-Zengin, 2009; Yetilmezsoy 
and Sakar, 2008; Turkdogan-Aydinol and Yetilmezsoy, 
2010; Yetilmezsoy, 2011; Yetilmezsoy, 2012). 

The measured data were imported directly from 
Microsoft® Excel used as an open database connectivity 
data source, and then the regression analysis was conducted. 
As regression models were solved, they were automatically 
sorted according to the goodness-of-fit criteria into a 
graphical interface on the DataFit® numeric computing 
nvironment. Additionally, t-ratios and the corresponding p-
values were computed to evaluate the significance of the 
regression coefficients. Descriptive statistics of the residual 
errors were also calculated for the appraisal of the multiple 
regression model performance. An alpha (α) level of 0.05 
(or 95% confidence) was used to determine the statistical 
significance of the model components. 

 
Measuring of the Goodness of the Estimate 

Measuring the goodness of the estimate is an important 
art of model development, and it can be achieved by 
several visual and numerical methods (Akkoyunlu et al.,
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(a)

(b)

(c)

 
Fig. 5. Fuzzification of gaseous pollutants (a) methane (CH4), (b) carbon monoxide (CO) and (c) ozone (O3). 

 

2010). Kolehmainen (2004) has reported that although 
visual methods helps to get an intuitive hold of the model 
performance, numerical methods provide a more robust 
ground for comparing and enhancing the models in a 
scientific way. In this regard, various statistical indicators, 
such as coefficient of determination (R2), mean absolute 
error (MAE), root mean square error (RMSE), systematic 
and unsystematic RMSE (RMSES and RMSEU, respectively), 
index of agreement (IA), the factor of two (FA2), fractional 
variance (FV), proportion of systematic error (PSE), 

coefficient of variation (CV) and Durbin–Watson statistic 
(DW) were utilized as helpful mathematical tools to appraise 
the fit between the measured data and the estimated outputs. 
ome descriptive statistics were also checked by using 
StatsDirect (V2.7.2, Copyright© 1990–2008, StatsDirect 
Ltd.) statistical software package for the verification of the 
obtained results. Detailed definitions of these estimators 
can be found in several studies (Kolehmainen, 2004; Agirre-
Basurko et al., 2006; Gomez-Sanchis et al., 2006; Appel et 
al., 2007; Ibarra-Berastegi et al., 2008; Yetilmezsoy and 
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Sakar, 2008; Yetilmezsoy et al., 2009; Yetilmezsoy, 2011). 
 
RESULTS AND DISCUSSION 
 
Prediction of Suspended Dust Concentration (PM10)  

In this study, a prognostic approach based on the fuzzy-
logic methodology and the multiple regression analysis 
analysis were conducted to forecast suspended dust 

concentrations (PM10) in a specific residential area. In the 
multiple regression analysis, one exponential model and 
two first-order polynomial models were obtained for 
estimation of PM10 levels. Results are summarized in 
Table 4. Regression variable results including standard 
error, the t-statistics and the corresponding p-values for the 
best-fit regression model (herein the exponential model) 
are given in Table 5. The exponential model derived as a

 

 

 

 

(a)

(b)

(c)

 
Fig. 6. Fuzzification of meteorological parameters (a) wind direction (WD), (b) wind speed (WS), (c) relative humidity (RH) 
and (d) solar radiation (SOLAR). 
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(d)

 
Fig. 6. (continued). 

 

 

 
Fig. 7. Fuzzification of suspended dust concentration (PM10 levels) (DUST). 

 

function of seven inputs variables [PM10 = f(CH4, CO, WS, 
WD, RH, SOLAR, O3)] including four meteorological 
parameters (wind speed, wind direction, relative humidity 
and solar radiation) and ambient concentrations of three 
gaseous pollutants (methane, carbon monoxide and ozone) 
is expressed as follows: 
 
PM10 = exp[a(CH4) + b(CO) + c(WS) + d(WD) + e(RH) + 
f(SOLAR) + g(Q3) + h] (1) 
 
PM10 = exp[4.591(CH4) + 0.187(CO) + 0.526(WS) – 
0.0047(WD) + 0.068(RH) + 1.056(SOLAR) + 0.0126(Q3) – 
5.054]  (2) 
 

It is reported that the larger t-ratio indicates the more 
significant parameter in the regression model. Moreover, 
the variable with the lowest p-value is considered the most 
significant (Yetilmezsoy and Sapci-Zengin, 2009). According 
to the t-ratios in Table 4, the relative humidity, methane 
concentration and wind speed have more importance than 
other variables for the derived exponential model in 
prediction of suspended dust concentration. Looking at p-

values (Table 4), it can also be seen that all p-values are 
less than the alpha (α) level of 0.05 (or 95% confidence) 
indicating the statistical significance of all components in 
the regression model. Scatter plots of PM10 concentration 
as a function of each of the predictor variables are illustrated 
in Fig. 8. Consequently, all variables exhibited a certain 
importance, indicating that they should not be eliminated 
from the models. It is noted that physicochemical aspects 
(i.e., photochemical reactions, atmospheric dispersion, 
phenomenon of the adsorption effect, automotive emission, 
photolytic cycle, etc.) of meterological conditions and 
gaseous pollutants on PM10 concentrations are fully discussed 
in previous studies (Van der Wal and Janssen, 2000; Monn, 
2001; Abdul-Wahab and Al-Alawi, 2002; Rizzo et al., 2002; 
Al-Salem, 2008; Giri et al., 2008; Barmpadimos et al., 
2012). 

Fig. 9 shows a head-to-head comparison of performances 
for the multiple regression-based models on prediction of 
M10 levels. Although the exponential model (multiple 
regression model - 1) produced smaller deviations compared 
to the first-order polynomial models (multiple regression 
model - 2 with constant term and multiple regression model
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Table 2. Number of trapezoidal membership functions (trapmf) and their ranks for each of the input and output variables 
considered in the present fuzzy sets. 

Level of 
trapezoidal 

membership 
functions 
(trapmf) 

Input variables 
Output 
variable

X1 X2 X3 X4 X5 X6 X7 Ya 
CH4 

(ppm) 
CO 

(ppm) 
WS 

(m/s) 
WD 

(degree) 
RH 
(%) 

SOLAR 
(kW/m2) 

O3 
(ppb) 

PM10 

(μg/m3)
A [1.534 1.594 

1.64 1.67] 
[–0.69 –0.09 
0.5 1.1] 

[0.44 0.74 
0.9 1.2] 

[31.82 46.82 
70 85] 

[7.542 9.542 
12 14] 

[–0.075 0.0052 
0.07 0.15] 

[–9 –3 6 12] [–30 –20 
50 100] 

B [1.64 1.67 
1.7 1.72] 

[0.5 1.1 1.5 
1.8] 

[0.9 1.2 1.4 
1.55] 

[70 85 100 
115] 

[12 14 16 
17.5] 

[0.07 0.15 0.2 
0.24] 

[6 12 18 22] [50 100 
130 150] 

C [1.7 1.72 
1.74 1.77] 

[1.5 1.8 2.2 
2.6] 

[1.4 1.55 1.7 
1.8] 

[100 115 
130 140] 

[16 17.5 19 
20.5] 

[0.2 0.24 0.28 
0.33] 

[18 22 28 
32] 

[130 150 
180 200] 

D [1.74 1.77 
1.79 1.82] 

[2.2 2.6 3 
3.3] 

[1.7 1.8 2 
2.1] 

[130 140 
150 165] 

[19 20.5 22 
23.5] 

[0.28 0.33 0.38 
0.42] 

[28 32 38 
43] 

[180 200 
230 250] 

E [1.79 1.82 
1.84 1.86] 

[3 3.3 3.8 
4.1] 

[2 2.1 2.3 
2.45] 

[150 165 
180 190] 

[22 23.5 25 
26.5] 

[0.38 0.42 0.46 
0.51] 

[38 43 48 
53] 

[230 250 
280 300] 

F [1.84 1.86 
1.88 1.91] 

[3.8 4.1 4.5 
4.8] 

[2.3 2.45 2.6 
2.7] 

[180 190 
200 215] 

[25 26.5 28 
29.5] 

[0.46 0.51 0.56 
0.59] 

[48 53 58 
63] 

[280 300 
330 350] 

G [1.88 1.91 
1.93 1.96] 

[4.5 4.8 5.2 
5.6] 

[2.6 2.7 2.8 
3] 

[200 215 
230 240] 

[28 29.5 31 
32.5] 

[0.56 0.59 0.62 
0.68] 

[58 63 68 
73] 

[330 350 
380 400] 

H [1.93 1.96 
1.98 2] 

[5.2 5.6 6.1 
6.3] 

[2.8 3 3.2 
3.3] 

[230 240 
250 265] 

[31 32.5 34 
35.5] 

[0.62 0.68 0.74 
0.78] 

[68 73 78 
83] 

[380 400 
430 460] 

I [1.98 2 2.02 
2.05] 

[6.1 6.3 6.6 
6.96] 

[3.2 3.3 3.5 
3.6] 

[250 265 
280 290] 

[34 35.5 37 
38] 

[0.74 0.78 0.82 
0.85 

[78 83 88 
93] 

[430 460 
500 515] 

J [2.02 2.05 
2.116 2.146] 

[6.6 6.96 
7.166 7.526] 

[3.5 3.6 
3.864 3.964]

[280 290 
311.8 321.8]

[37 38 39.38 
40.38] 

[0.82 0.85 
0.9002 0.9302] 

[88 93 102.1 
107.1] 

[500 515 
535 650] 

K - - - - - - - [535 650 
800 900] 

L - - - - - - - [800 900 
1200 1300]

M - - - - - - - [1200 1300 
1500 1700]

N - - - - - - - [1500 1700 
1900 2100]

O - - - - - - - [1900 2100 
2415 2615]

 

- 3 without constant term), in general, multiple regression-
based methodology show a poor prediction performance on 
the measured data with high residual errors. Considering the 
overall performances, the conventional regression approach 
did not yield satisfactory predictions of the PM10 levels as 
good as the proposed fuzzy-logic-based model (Fig. 10).  
 
Model Testing and Validation  

To validate the models’ prediction capability, the testing 
data set for each model (fuzzy-logic and exponential model) 
were used to test the developed models. The resulting 
predictions were then compared with actual results, and 
various statistical numerical measures (i.e., R2, MAE, 
RMSE, RMSES, RMSEU, PSE, IA, FV, FA2, CV and DW) 
were then calculated. Results are summarized in Table 6. In 
this study, the fuzzy logic-based model was developed 
based on a total of 146 rules in the IF-THEN format and 
tested against 45 additional observed data (Fig. 11). Looking 
at the testing outputs and deviations of the developed models 
(Fig. 11), it can be concluded that the proposed fuzzy-logic 

model demonstrated a very satisfactory performance on the 
prediction of PM10 concentrations compared to the multiple 
regression approach.  

As also seen in Table 6, descriptive performance indices 
revealed that the fuzzy-logic-based model produced very 
small deviations and demonstrated a superior predictive 
performance compared to the conventional multiple 
regression-based method. The values of determination 
coefficient (R2 > 0.99 for both overall data and testing 
data) indicated that only about 1% of the total variations 
were not explained by the fuzzy-logic model in estimation 
of PM10 levels. However, for the best-fit multiple regression 
model (exponential model), about 33.5% and 24.4% of total 
variations did not fit the observed data for the overall data 
set (R2 = 0.665) and testing data set (R2 = 0.756), respectively. 

Additionally, values of PSE (0.058 and 0.314) and FV 
(0.018 and 0.029) obtained using the fuzzy-logic model 
demonstrated greater accuracy than the multiple regression 
approach in the forecast of PM concentration, respectively. 
Moreover, the lowest values of MAE (17.78 and 19.83),
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Table 3. A random selection of 25 rule sets from the total 146 sets. 

Number of 
fuzzy rule 

Input variables Output variable
X1 X2 X3 X4 X5 X6 X7 Ya 

CH4 (ppm) CO (ppm) WS (m/s) WD (degree) RH (%) SOLAR (kW/m2) O3 (ppb) PM10 (μg/m3)
1 C A B I E A D B 
4 D B D I D A A D 
9 B B D J B G D B 

12 C H C C D A A F 
14 D J B E D A A J 
26 B B G I B G C E 
19 F B B H D A A I 
29 A A E I A I F G 
31 A A D E B H G H 
33 B B J C E E F O 
36 C G D D G A A L 
41 C B G I C A A A 
49 B B E J B F C B 
53 A B E I A H E A 
68 B A C J H A C C 
73 D C B J D E B C 
86 A C D B C A A A 
99 C B C J C G D B 

104 A A G J A H E B 
116 B A B J E A D B 
120 B B E I E C B A 
129 A A G I A F G A 
136 B A H J C A D B 
139 A A H J D A E B 
146 A A F J A H E B 

 

Table 4. Summary of the multiple regression-based results. 

Rank Regression model SEE SR RA RSS R2 Ra
2 NNI

Prediction of suspended dust concentrations (PM10) 
1 exp(aX1 + bX2 + cX3 + dX4 +eX5 + fX6 + 

gX7 + h) 
167.303 705.202 4.966 3750713.86 0.667 0.649 18

2 aX1 + bX2 + cX3 + dX4 +eX5 + fX6 + gX7 
+ h 

219.776 8.4 × 10–10 5.9 × 10–12 6472397.49 0.425 0.395 11

3 aX1 + bX2 + cX3 + dX4 +eX5 + fX6 + gX7 236.925 –462.282 –3.256 7578034.74 0.327 0.297 5 
SEE, standard error of the estimate; SR, sum of residuals; RA, residual average; RSS, residual sum of squares; R2, coefficient 
of multiple determination; Ra

2, adjusted coefficient of multiple determination; NNI, number of non-linear iterations. 

 

Table 5. Model components and regression variable results for the best-fit (exponential) model. 

Independent and original variables SEa t-ratio p-valueb

Y = exp(aX1 + bX2 + cX3 + dX4 +eX5 + fX6 + gX7 + h) 
PM10 = exp[a(CH4) + b(CO) + c(WS) + d(WD) + e(RH) + f(SOLAR) + g(Q3) + h] 
PM10 = exp[4.591(CH4) + 0.187(CO) + 0.526(WS) – 0.0047(WD) + 0.068(RH) + 1.056(SOLAR) + 0.0126(Q3) – 5.054] 

X1 = CH4 concentration (ppm) 0.7464 6.1504 0.00000 
X2 = CO concentration (ppm) 0.0553 3.3763 0.00096 

X3 = Wind speed (m/s) 0.0891 5.8982 0.00000 
X4 = Wind direction (degree) 0.0014 –3.2193 0.00161 
X5 = Relative humidity (%) 0.0105 6.4887 0.00000 
X6 = Solar energy (kW/m2) 0.5294 1.9943 0.04815 
X7 = O3 concentration (ppb) 0.0045 2.7875 0.00608 

h = Constant term 1.4394 –3.5110 0.00061 
a Standard error. 
b p-values < 0.05 were considered to be significant. 
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Fig. 8. Scatter plots of PM10 concentration as a function of each of the predictor variables. 

 

RMSE (28.19 and 28.28), RMSES (6.59 and 13.83) and 
RMSEU (27.41 and 24.68) indicated that the proposed fuzzy-
logic model performed also better than the conventional 
multiple regression-based method. Furthermore, very high 
values of IA (0.997 and 0.999) concluded that the proposed 
prognostic model was the most accurate prediction model 
to forecast PM10 levels for the present case. Low values of 
the coefficient of variation (CV = 15.36% for overall data 
and 9.41% for testing data) obtained by the fuzzy-logic 
model also indicates a very high degree of precision and a 
good deal of the reliability of the measured data, as pointed 
out by Yetilmezsoy et al. (2009). 

For the present case, the DW statistics (DW = 1.979 for 
overall data and 2.082 for testing data) were determined to be 
very close to 2, indicating the goodness-of-fit of the fuzzy-
logic model (Hewings et al., 2002). On the basis of the above-
mentioned results, this study has clearly indicated a simple 

means of modeling and potential of the artificial intelligence-
based approach for capturing complicated inter-relationships 
between suspended dust and other factors in a highly non-
linear air pollution problem at a particular location.  

Finally, it is important to note that although the process-
based deterministic approaches may give a good insight into 
the mechanism at the steady-state conditions, however, re-
calibration of these models is extremely time-consuming 
and difficult for PM10-related air pollution problems in 
different periods of time. On the other hand, calibration of 
artificial intelligence-based models (i.e. fuzzy-logic model) 
is quite easier than white-box models, as there are fewer 
parameters used in the model development process. Since 
the model calibration should include comparisons between 
model-simulated conditions and the observed data from 
field conditions, it is important to minimize the difference 
between model simulations and field conditions. In this
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Fig. 9. A head-to-head comparison of performances for measured data, fuzzy-logic outputs and the multiple regression 
models (exponential, polynomial with constant term and polynomial without constant term, respectively) by means of 
suspended dust concentration (PM10). 
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Fig. 10. A head-to-head comparison of performances for measured data, fuzzy-logic outputs and the best-fit regression model 
(exponential model) outputs by means of suspended dust concentration (PM10). 
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Fig. 10. (continued). 
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Fig. 11. A head-to-head comparison of performances for measured data, fuzzy-logic testing outputs (responses for 45 
additional observed data) and the exponential model outputs by means of suspended dust concentration (PM10). 
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Table 6. Descriptive statistical performance indices for the data sets considered in the present prognostic approach. 

Performance indicators Calculationa Overall data Testing data 
FLMb MRMc FLMb MRMc

Determination coefficient (R2) 

2

12

2 2

1 1

( )( )

( ) ( )

n

i m i m
i

n n

i m i m
i i

O O P P

R

O O P P



 

 
   

 
 



 
 0.991 0.665 0.997 0.756

Mean absolute error (MAE) 
1

1 n

i i
i

MAE P O
n 

   17.78 97.49 19.83 129.22

Root mean squared error (RMSE)  
0.5

2

1

1 n

i i
i

RMSE P O
n 

 
   
 
  28.19 164.86 28.28 233.64

Systematic root mean squared error (RMSES)   
0.5

2

1

1 n

S i ireg
i

RMSE P O
n 

       
 6.59 93.66 13.83 146.23

Unsystematic root mean squared error 
(RMSEU)  

0.5
2

1

1 n

U i ireg
i

RMSE P P
n 

       
 27.41 91.51 24.68 182.22

Proportion of systematic error (PSE) 
 
 

2

2
S

U

RMSE
PSE

RMSE
  0.058 0.477 0.314 0.644

Index of agreement (IA) 

 

 

2

1

2

1

1

n

i i
i

n

i m i m
i

P O

IA

P O O O






 

  




 0.997 0.892 0.999 0.915

Fractional variance (FV)    2 /o p o pFV        0.018 0.193 0.029 0.185

Factor of two (FA2) 
1

1
0.5 2 2

n
i

ii

O
FA

n P

 
   

 
  1.023 1.159 1.024 1.616

Coefficient of variation (CV, %)  CV / 100mRMSE O   15.36 89.92 9.41 77.72

Durbin–Watson (DW) statistic (ei = Oi – Pi)  2 2
1

2 1

DW
n n

i i i
i i

e e e
 

    1.979 1.545 2.082 1.811

a O, P, m and reg are the subscripts indicating the observed, predicted, mean and regression respectively. 
a Fuzzy-logic model. 
b Multiple regression model. 

 
regard, it is noted that re-calibration of fuzzy-logic-based 
models needs the assignment of specific thresholds (i.e., 
residuals should be less than 5–10 percent of the variability) 
nd membership degrees by decision makers and experts.  

Even if the circumstances change or the calibrated 
model is applied in a different period of time, this 
procedure can be handled in a straightforward manner by 
using efficient computational methods and user-friendly  
artificial intelligence-based software solutions. 
 
CONCLUSIONS 
 

An artificial intelligence-based approach has been 
conducted to develop a prognostic model that could make 
a reliable prediction on PM10 levels in a specific residential 

area with high traffic and industrial influences. For seven 
fundamental model components (wind speed, wind direction, 
relative humidity, solar radiation, methane, carbon monoxide 
and ozone), the proposed prognostic approach based on the 
fuzzy-logic methodology has shown precise and very 
effective predictions compared to the conventional multiple 
regression-based method. Clearly, this study has indicated 
that the fuzzy-logic-based methodology provided a well-
suited method and gave promising results for modeling of 
a highly non-linear air pollution problem at a particular 
location. 
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