OPEN ACCESS

Articles online

Radiative Forcing of Carbonaceous Aerosols over Two Urban Environments in Northern India

Category: Aerosol and Atmospheric Chemistry

Volume: 18 | Issue: 4 | Pages: 884-894
DOI: 10.4209/aaqr.2017.01.0056
PDF

Export Citation:  RIS | BibTeX

Abhilash S. Panicker 1, Rathod Aditi1, Gufran Beig1, Kaushar Ali1, Fabien Solmon2

  • 1 Indian Institute of Tropical Meteorology, Pune 411008, India
  • 2 International Centre for Theoretical Physics (ICTP), 34151 Trieste, Italy

Highlights

Radiative forcing of Organic Carbon (OC) and Elemental Carbon (EC) were estimated.
EC induced Atmospheric radiative forcing showed an enhancement of 20 to 43 W m–2.
The OC forcing was meager inspite of its higher concentration compared to EC.


Abstract

The radiative forcing of elemental carbon (EC) and organic carbon (OC) has been estimated over two urban environments in Northern India (Jabalpur [JBL] and Udaipur [UDPR]) from November 2011 till November 2012 (till September 2012 over Jabalpur). The elemental carbon concentrations reached 7.36 ± 1.99 µg m–3 over JBL and were as high as 10.78 ± 4.85 µg m–3 over UDPR, whereas the corresponding OC concentrations were much higher in different months (as high as 19.37 ± 12.6 µg m–3 over JBL and 39.71 ± 13.05 µg m–3 over UDPR). The radiative forcing for OC and EC has been estimated using an optical model along with a radiative transfer model. The surface OC radiative forcing was found to range from –2.19 ± 1.93 W m–2 to –3.083 ± 2.29 W m–2 over JBL and –1.97 ± 1.37 to –5.89 ± 2.17 W m–2 over UDPR, whereas the estimated top of the atmosphere (TOA) forcing ranged from –0.87 ± 0.49 to –1.87 ± 0.90 W m–2 over JBL and from –1.23 ± 0.31 to –3.44 ± 1.51 W m–2 over UDPR. However, the effect of EC forcing (as high as –21.75 W m–2 at the surface of and +6.3 W m–2 at TOA over JBL and –38.21 W m–2 at the surface of and +5.05 W m–2 at TOA over UDPR) was found to be more than tenfold higher than OC forcing due to its strong atmospheric absorption, in spite of much lower concentrations compared to OC.

Keywords

Elemental carbon Organic carbon Radiative forcing


Related Article

Size Distributions of Water-soluble Inorganic Ions in Atmospheric Aerosols during Meiyu Period on the North Shore of Taihu Lake, China

Duanyang Liu , Yan Su, Huaqing Peng, Wenlian Yan, Yi Li, Xuejun Liu, Bin Zhu, Honglei Wang, Xiliang Zhang
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.04.0123
PDF

Optical Properties of Near-surface Urban Aerosols and their Chemical Tracing in a Mediterranean City (Athens)

Dimitris Katsanos, Aikaterini Bougiatioti, Eleni Liakakou, Dimitris G. Kaskaoutis, Iasonas Stavroulas, Despina Paraskevopoulou, Maria Lianou, Basil E. Psiloglou, Evangelos Gerasopoulos, Christodoulos Pilinis, Nikolaos Mihalopoulos
;