Articles online

Backward Integration of Diffusion Equation

Category: Air Pollution Modeling

Volume: 17 | Issue: 1 | Pages: 278-289
DOI: 10.4209/aaqr.2016.06.0271
PDF | RIS | BibTeX

Wen-Yih Sun 1,2,3, Oliver M. Sun4

  • 1 Department of Earth, Atmospheric and Planetary Sciences, Purdue University, W. Lafayette, IN 47907, USA
  • 2 Department of Atmospheric Sciences, National Central University, Zhongli, Taoyuan City 32001, Taiwan
  • 3 Hydrospheric Atmospheric Research Center (HyARC), Nagoya University, Nagoya 464-8601, Japan
  • 4 Naval Undersea Warfare Center, Newport, RI 02841-1708, USA


Diffusion equation is converted to integral equations of concentration in 5 cells.
Diffusion is treated as subgrid-concentration-mass flux across cells’ boundaries.
They are successfully integrated in both forward and backward in time with diffusion.
Both integrated results very differ from Lagrangian-trajectory method without mixing.
They can be used to assess pollutants at sources from downwind region or vice versa.


When the parabolic differential equation is integrated backward in time, it can create unwanted shortwaves with large amplitude. Hence, instead of solving it as a differential equation, the diffusion equation is converted to the equations of volume-integrated-concentration, and mixing/diffusion is treated as subgrid-turbulent-fluxes across the cell boundaries. Those equations become a set of linear algebra equations and can be solved in both forward- and backward-in time. The proposed method has been validated by the numerical simulations of an idealized case, which consists of 5 different sizes of concentric cylinders with different species. The time evolution of compositions shows that the concentrations in each cylinder can change drastically with time. For the data collected at downwind region, the proposed reverse-in-time integration can be used to assess the concentrations at the source regions, which can be quite different from those derived from the conventional backward-trajectory method without mixing. It also shows that the traditional forward-trajectory or backward-trajectory method without mixing (i.e., Lagrangian method) widely used in meteorology and air pollution can misinterpret the property of fluid parcel at both upwind and downwind regions significantly.


Forward and backward integration Diffusion Parabolic and hyperbolic equations Mixing/Diffusion-time scale Turbulence Pollution

Related Article

Improvement of the Real-time PM2.5 Forecast over the Beijing-Tianjin-Hebei Region using an Optimal Interpolation Data Assimilation Method

Haitao Zheng, Jianguo Liu , Xiao Tang, Zifa Wang , Huangjian Wu, Pingzhong Yan, Wei Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0522

Determining VOCs Reactivity for Ozone Forming Potential in the Megacity of São Paulo

Débora Souza Alvim , Luciana Vanni Gatti, Sergio Machado Corrêa, Júlio Barboza Chiquetto, Guaciara Macedo Santos, Carlos de Souza Rossatti, Angélica Pretto, José Roberto Rozante, Silvio Nilo Figueroa, Jayant Pendharkar, Paulo Nobre
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.10.0361