OPEN ACCESS

Articles online

Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors over Southeast Asia

Category: Optical/Radiative Properties and Remote Sensing

Volume: 16 | Issue: 11 | Pages: 2831-2842
DOI: 10.4209/aaqr.2015.08.0506
PDF | RIS | BibTeX

Jaehwa Lee 1,2, N. Christina Hsu1, Corey Bettenhausen1,3, Andrew M. Sayer1,4, Colin J. Seftor1,3, Myeong-Jae Jeong5, Si-Chee Tsay1, Ellsworth J. Welton1, Sheng-Hsiang Wang6, Wei-Nai Chen7

  • 1 NASA Goddard Space Flight Center, Greenbelt, MD, USA
  • 2 Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
  • 3 Science Systems & Applications, Inc., Lanham, MD, USA
  • 4 Goddard Earth Science Technology and Research, Universities Space Research Association, Columbia, MD, USA
  • 5 Department of Atmospheric and Environmental Sciences, Gangneung-Wonju National University, Gangneung, Gangwon, Korea
  • 6 Department of Atmospheric Sciences, National Central University, Chung-Li 32001, Taiwan
  • 7 Research Center for Environmental Changes, Academia Sinica, Taipei 11529, Taiwan

Highlights

Satellite retrievals of aerosol SSA and height are performed over Southeast Asia.
Retrieval results are compared to data from spaceborne and ground-based instruments. 
Satellite-retrieved SSA and height show promising performance.


Abstract

This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against spaceborne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74% (81–84%) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.8–1.0 km). Eliminating the requirement for CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64% of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

Keywords

Aerosol height Satellite Biomass burning Southeast Asia 7-SEAS


Related Article

Effects of Carbon Dioxide Addition on the Soot Particle Sizes in an Ethylene/Air Flame

Linghong Chen, Jianwu Zhou, Xianjue Zheng, Jian Wu, Xuecheng Wu , Xiang Gao, Gérard Gréhan, Kefa Cen
Volume: 17 | Issue: 10 | Pages: 2522-2532
DOI: 10.4209/aaqr.2017.08.0271
PDF
;