OPEN ACCESS

Articles online

Aerosol Climatology over the Bay of Bengal and Arabian Sea Inferred from Space-Borne Radiometers and Lidar Observations

Category: Optical/Radiative Properties and Remote Sensing

Volume: 16 | Issue: 11 | Pages: 2855-2868
DOI: 10.4209/aaqr.2015.06.0406
PDF | RIS | BibTeX

Shani Tiwari1, Amit K. Mishra2, Abhay K. Singh 1

  • 1 Atmospheric Research Lab., Department of Physics, Banaras Hindu University, Varanasi-221005, India
  • 2 Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 76100, Israel

Highlights

Aerosol climatology studied over the BoB and AS using long term (2006–2012) data.
AS experiences higher AOD as compared to that over BoB during the study period.
Elevated layers of absorbing dust up to 2–4 km altitudes are observed.
A good periodicity in aerosol loading is observed over both the regions.
A strong seasonal heterogeneity in aerosol properties is also observed.


Abstract

Atmospheric aerosols over the oceanic region are very important air pollutant and play a vital role in Earth’s radiation budget and climate change. This study presents the aerosol climatology over the Bay of Bengal (BoB) and Arabian sea (AS) using long term (2006–2012) data from space-borne radiometers [Moderate-Resolution Imaging Spectroradiometer (MODIS), Ozone Monitoring Instrument (OMI)] and space-based active lidar onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). AS experiences higher AOD as compared to that over BoB during the study period. A good periodicity along with strong intra-seasonal/annual variability in aerosol loading is also observed over both the study regions. Approximately one month lag is found for maximum aerosol loading period over AS and BoB for almost every year i.e., June–July for AS and May–June for BoB. This lag could be explained by pathway and timing of summer monsoon over the Indian subcontinent. Elevated layers of absorbing dust up to 2–4 km altitudes are observed during the pre-monsoon and monsoon seasons over both the regions. The CALIPSO measurements show strong seasonal heterogeneity in aerosol properties over both the regions, which is well corroborated with MODIS and OMI observations. This significant seasonal heterogeneity in aerosol loading has been explained by the role of transportation of aerosols from various emission sources using NOAA HYSPLIT back trajectory model at three different altitude levels viz. 500, 1500 and 2500 m height. The possible role of Indian summer monsoon in modulating the aerosol behaviour over AS and BoB is another important aspect of this study that need further analyses using higher spatio-temporal resolution data.

Keywords

MODIS CALIPSO AOD Aerosol Index (AI) Fine Mode Fraction (FMF)


Related Article

Effects of Carbon Dioxide Addition on the Soot Particle Sizes in an Ethylene/Air Flame

Linghong Chen, Jianwu Zhou, Xianjue Zheng, Jian Wu, Xuecheng Wu , Xiang Gao, Gérard Gréhan, Kefa Cen
Volume: 17 | Issue: 10 | Pages: 2522-2532
DOI: 10.4209/aaqr.2017.08.0271
PDF
;