Articles online

Seasonal Characteristics of Aerosol Black Carbon in Relation to Long Range Transport over Tripura in Northeast India

Category: Aerosol Physics and Instrumentation

Volume: 15 | Issue: 3 | Pages: 786-798
DOI: 10.4209/aaqr.2014.02.0029

Export Citation:  RIS | BibTeX

To cite this article:
Guha, A., De, B.K., Dhar, P., Banik, T., Chakraborty, M., Roy, R., Choudhury, A., Gogoi, M.M., Babu, S.S. and Moorthy, K.K. (2015). Seasonal Characteristics of Aerosol Black Carbon in Relation to Long Range Transport over Tripura in Northeast India. Aerosol Air Qual. Res. 15: 786-798. doi: 10.4209/aaqr.2014.02.0029.

Anirban Guha 1, Barin Kumar De1, Pranab Dhar1, Trisanu Banik1, Monti Chakraborty1, Rakesh Roy2, Abhijit Choudhury1, Mukunda M. Gogoi3, S. Suresh Babu3, K. Krishna Moorthy3

  • 1 Department of Physics, Tripura University, Suryamaninagar-799 022, India
  • 2 Department of Physics, National Institute of Technology, Agartala, Jirania – 799055, India
  • 3 Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram-695022, India


Studies on seasonal variation of Black Carbon (BC) over Tripura in Northeast India.
Seasonal variation of alpha absorption coefficient of BC over long term.
Long range transport of BC from Indo-Gangetic Plain (IGP).


This study presents the characteristics of aerosol black carbon (BC) from a rural continental site, Agartala, located in the North-Eastern part of India using two year measurements from September 2010 to September 2012. Diurnal and seasonal variations are examined in relation to the unique geographical location, changeable meteorological conditions and distinct source characteristics. Winter season is characterized by extremely high BC concentration (17.8 ± 9.2 µg/m3) comparable to those seen in urban environments of India, dropping off to much lower values during the monsoon (2.8 ± 1.7 µg/m3). Even this lowest seasonal mean is rather high, given the rural nature of Tripura. Examination of the spectral dependence of aerosol absorption coefficients indicates that the main source of aerosol to total BC burden at Agartala is the fossil fuel combustions. Concentration weighted trajectory (CWT) analysis indicate that the characteristic high BC during winter is mostly associated with the advection from the Indo-Gangetic Plains (IGP), while the air mass pattern is constricted to the oceanic region during monsoon making BC aloft due to local pollution only.


Black Carbon (BC) Absorption coefficients Aerosol transport CWT analysis

Related Article

Influence of the Dilution System and Electrical Low Pressure Impactor Performance on Particulate Emission Measurements from a Medium-scale Biomass Boiler

Jordi F.P. Cornette , Thibault Coppieters, Dominique Desagher, Jurgen Annendijck, Hélène Lepaumier, Nathalie Faniel, Igor Dyakov, Julien Blondeau, Svend Bram

Estimation of Surface Particulate Matter (PM2.5 and PM10) Mass Concentrations from Ceilometer Backscattered Profiles

Avinash N. Parde, Sachin D. Ghude , Prakash Pithani, Narendra G. Dhangar, Sandip Nivdange, Gopal Krishna, D.M. Lal, R. Jenamani, Pankaj Singh, Chinmay Jena, Ramakrishna Karumuri, P.D. Safai, D.M. Chate
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.08.0371