OPEN ACCESS

Articles online

Emission Characteristics and Formation Pathways of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans from a Typical Pesticide Plant

Category: Air Pollution and Health Effects

Volume: 19 | Issue: 6 | Pages: 1390-1399
DOI: 10.4209/aaqr.2019.04.0224
PDF

Export Citation:  RIS | BibTeX

Yufeng Ma1, Xiaoqing Lin 1, Zhiliang Chen1, Tong Chen1, Mingxiu Zhan2, Shuaixi Xu3, Hailong Wu4, Xiaodong Li1, Jianhua Yan1

  • 1 State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Zhejiang 310027, China
  • 2 College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
  • 3 Zhejiang Electric Power Design Institute Co., Ltd., Hangzhou 310012, China
  • 4 Environment Protection Bureau of Zhoushan, Zhoushan 316021, China

Highlights

  • The emission characteristics of the PCDD/Fs in pesticide plant were investigated.
  • The main formation area of PCDD/Fs is the quenching/deacidification tower.
  • The I-TEQ value in flue gas at outlet of stack meets the Chinese emission limit.
  • The TEQ estimated emission of PCDD/Fs is 9.3 g year–1 in the pesticide plant.

Abstract

The emission characteristics and the formation pathways of the polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from a pesticide plant were well investigated. In the present study, the international toxic equivalent quantity (I-TEQ) value of the PCDD/Fs (0.087 ng I-TEQ Nm–3) in the flue gas at the outlet of stack can meet the emission limit (0.1 ng I-TEQ Nm–3). The I-TEQ value of the PCDD/Fs (3.25 pg I-TEQ g–1) in the fly ash is much lower than the permitted standard for disposal in sanitary landfill sites (3.0 ng of I-TEQ g–1). In addition, 1,2,3,4,6,7,8-HpCDD, OCDD and 1,2,3,4,6,7,8-HpCDF are the three main congeners in the PCDD/Fs for the outlet of both the secondary combustion chamber and the stack. 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-HxCDD, 1,2,3,4,6,7,8-HpCDD and OCDD are the most dominant congeners for the PCDD/Fs from inlet of bag filter. PCDD/Fs may be formed through high temperature homogeneous synthesis and heterogeneous precursor synthesis in the flue gas. In addition, PCDD/Fs might be formed in bag filter via de novo synthesis. The main formation areas of PCDD/Fs are waste heat boiler and quenching/deacidification tower in this pesticide plant. The TEQ estimated emissions of PCDD/Fs reaches 9.3 g year–1. These findings are helpful for further controlling the formation and emission of PCDD/Fs in pesticide plants, yet more studies are still required.

Keywords

Polychlorinated dibenzo-p-dioxins and dibenzofurans Chemical plant Emission characteristics TEQ emission factor Formation pathways


Related Article

Nanofiber Filter Performance Improvement: Nanofiber Layer Uniformity and Branched Nanofiber

Seong Chan Kim , Seungkoo Kang, Handol Lee, Dong-Bin Kwak, Qisheng Ou, Chenxing Pei, David Y.H. Pui
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.07.0343
PDF

Household Indoor Particulate Matter Measurement Using a Network of Low-cost Sensors

Shruti Hegde , Kyeong T. Min, James Moore, Philip Lundrigan, Neal Patwari, Scott Collingwood, Alfred Balch, Kerry E. Kelly
;