OPEN ACCESS

Articles online

Preparation of CoFe2O4-Graphene Composites Using Aerosol Spray Pyrolysis for Supercapacitors Application

Category: Aerosol Physics and Instrumentation

Volume: 19 | Issue: 3 | Pages: 443-448
DOI: 10.4209/aaqr.2018.10.0372
PDF

Export Citation:  RIS | BibTeX

Chongmin Lee1,2, Hankwon Chang1,2, Hee Dong Jang 1,2

  • 1 Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources, Yuseong-gu, Daejeon 34132, Korea
  • 2 Department of Nanomaterials Science and Engineering, University of Science and Technology, Yuseong-gu, Daejeon 34113, Korea

Highlights

The CoFe2O4-graphene composites were synthesized by aerosol spray pyrolysis.
The composites showed crumpled paper ball like morphology.
The composites showed enhanced specific capacitance and rate capability.


Abstract

Cobalt-iron oxides have attracted much attention as electrode materials for supercapacitors. Graphene loaded with cobalt ferrite (CoFe2O4) nanoparticles can exhibit enhanced specific capacitance. Here, we present three-dimensional (3D) crumpled graphene (CGR) loaded with CoFe2O4 nanoparticles. The CoFe2O4-graphene composites were synthesized from a colloidal mixture of GO, FeCl3⋅6H2O, and CoCl2⋅6H2O by one step aerosol spray pyrolysis. The CoFe2O4-GR composites displayed a morphology resembling a crumpled paper ball, and the size of the CoFe2O4 and CGR in the composites was around 5 nm and 500 nm, respectively. The highest specific capacitance of the CoFe2O4-graphene composites was 253 F g–1.

Keywords

Aerosol spray pyrolysis CoFe2O4 Nanoparticles Graphene Supercapacitors


Related Article

A Cost-effective, Miniature Electrical Ultrafine Particle Sizer (mini-eUPS) for Ultrafine Particle (UFP) Monitoring Network

Qiaoling Liu, Di Liu, Xiaotong Chen, Qiang Zhang, Jingkun Jiang, Da-Ren Chen
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.11.0427
PDF

Long-term field Evaluation of Low-cost Particulate Matter Sensors in Nanjing

Lu Bai, Lin Huang, Zhenglu Wang, Qi Ying , Jun Zheng, Xiaowen Shi, Jianlin Hu
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.11.0424
PDF
;