OPEN ACCESS

Articles online

Synthesis of Multiwall Carbon Nanotube/Graphene Composite by an Aerosol Process and its Characterization for Supercapacitors

Category: Aerosol Physics and Instrumentation

Article In Press
DOI: 10.4209/aaqr.2018.10.0371
PDF

Export Citation:  RIS | BibTeX

Eun Hee Jo1,2, Sun Kyung Kim1, Hankwon Chang1,2, Chongmin Lee1, Su-Ryeon Park1, Ji-Hyuk Choi2, Hee Dong Jang 1,2

  • 1 Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources, Yuseong-gu, Daejeon 34132, Korea
  • 2 Department of Nanomaterials Science and Engineering, University of Science and Technology, Yuseong-gu, Daejeon 34113, Korea

Highlights

MWNT/GR composite was fabricated by aerosol spray drying.
The composites showed a crumpled paper ball like morphology.
The composite electrode showed excellent capacitance and rate of capacity retention.


Abstract

A multiwall carbon nanotube/graphene (MWCNT/GR) composite was synthesized for an enhanced supercapacitor. Aerosol spray drying (ASD) was used to synthesize the MWCNT/GR particles using a mixture of graphene oxide (GO) solution and MWCNT. The effect of the MWCNT/GO ratio on the properties of the composite, including its shape and structure, was investigated. The composite particles were generally shaped like a crumpled paper ball, with an average diameter of approximately 5 µm. The MWCNTs, which were uniformly dispersed among the graphene sheets, not only increased the basal spacing of the sheets but also bridged the wide gaps between them, thereby improving electron transfer between the layers. Thus, the MWCNTs increased the contact area of the electrolyte/electrode and facilitated the transportation of electrons and electrolyte in the electrode. Using a two-electrode testing system, the electrochemical results demonstrate that the MWCNT/GR (weight ratio = 0.1) electrode has a capacitance of 192 F g–1 and an excellent rate of capacity retention (88% at 4 A g–1).

Keywords

Supercapacitor MWCNT/GR Aerosol spray drying


Related Article

Characterization of a Piezoelectric Inkjet Aerosol Generator for the Study of Bioaerosol Survivability

Chih-Wei Lin, Ting-Ho Kuo, Sheng-Hsiu Huang, Yu-Mei Kuo , Wen-Jong Wu, Chih-Chieh Chen
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.07.0254
PDF

Development and Validation of a Novel Particle Source for Nano-sized Test Aerosols

Christian Monsé , Christian Monz, Burkhard Stahlmecke, Birger Jettkant, Jürgen Bünger, Thomas Brüning, Volker Neumann, Dirk Dahmann
Article In Press
DOI: 10.4209/aaqr.2018.06.0219
PDF

Experimental Characterization of Aerosol Suspension in a Rotating Drum

Sheng-Hsiu Huang, Yu-Mei Kuo , Chih-Wei Lin, Wei-Ren Ke, Chih-Chieh Chen
Article In Press
DOI: 10.4209/aaqr.2018.05.0174
PDF
;