OPEN ACCESS

Articles online

Characteristics of PM2.5-bound PAHs at an Urban Site and a Suburban Site in Jinan in North China Plain

Category: Air Pollution and Health Effects

Volume: 19 | Issue: 4 | Pages: 871-884
DOI: 10.4209/aaqr.2018.09.0353
PDF | Supplemental material

Export Citation:  RIS | BibTeX

Yan Zhang1, Lingxiao Yang 1,2, Xiongfei Zhang1, Jingshu Li1, Tong Zhao1, Ying Gao1, Pan Jiang1, Yanyan Li1, Xiangfeng Chen3, Wenxing Wang1

  • 1 Environment Research Institute, Shandong University, Qingdao, Shandong 266237, China
  • 2 Jiangsu Collaborative Innovation Center for Climate Change, Nanjing, Jiangsu 210093, China
  • 3 Shandong Analysis and Test Center, Shandong Academy of Science, Jinan, Shandong 250014, China

Highlights

  • Vehicle emission made more significant contribution to suburban areas.
  • Potential health risk was higher than the standard value of 1 ng m–3.
  • Local emission is dominate PM2.5-bound PAHs source in winter and spring.

Abstract

The PM2.5 samples at an urban site (JN) and a suburban site (QXT) were simultaneously collected in a heavily polluted city in North China Plain (Jinan) from March to December in 2016, and eighteen polycyclic aromatic hydrocarbons (PAHs) were analyzed. The annual average ∑PAHs concentrations were 39.8 ± 36.6 and 23.6 ± 14.0 ng m–3 at JN and QXT, respectively, with the highest concentrations observed during winter. PHE and CHY were the two most abundant PAHs, accounting for 31.1% at JN and 34.2% at QXT. Source apportionment analyses from the results of Principal Component Analysis (PCA) revealed that coal/biomass combustion and vehicle emission were the major PAH sources in PM2.5. The ratio of LMW + MMW (LMW: low molecular weight; MMW: middle molecular weight) PAHs to ∑PAHs at JN was significantly lower (p < 0.001) than that at QXT, indicating coal/biomass burning made more significant contribution to suburban area than that to urban area. Conversely, vehicle emission worked more effectively to urban area. The total benzo[a]pyrene (BaP) equivalent concentration (BaPeq) of PAHs (gas + particle phases) was 9.66 times higher than the standard value (1.00 ng m–3) and mainly originated from PAHs in particles (93.1%) with the highest contributor of Benzo(a)pyrene (BaP, 60.8%) at the urban site of Jinan in winter. The total incremental lifetime cancer risk (ILCR) assessment suggested that all age groups may have potential health risk at JN in winter except for infant. The Concentration Weighted Trajectory (CWT) model indicated that local emission and short-distance transport were the main sources of PAHs during spring and winter, and long-range transport played a key role on PAH concentrations in summer and autumn.

Keywords

Seasonal variation Diurnal variation PCA Health risk assessment CWT


Related Article

Seasonal Variation, Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Ningbo, China

Yue Wu, Beibei Lu, Xinlei Zhu, Aihong Wang, Meng Yang, Shaohua Gu, Xiaoxia Wang, Pengbo Leng, Kristina M. Zierold, Xiaohai Li, Ke Kerri Tang, Lanyun Fang, Ruixue Huang, Guozhang Xu , Lv Chen
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.12.0452
PDF

Global Research Trends in Health Effects of Volatile Organic Compounds during the Last 16 Years: A Bibliometric Analysis

Shumin Cheng, Jiale Zhang, Yujing Wang, Daqing Zhang, Guopeng Teng, Guo-Ping Chang-Chien, Qianli Huang , Yu-Bo Zhang , Ping Yan
;