OPEN ACCESS

Articles online

Removal of Trimethylamine from Indoor Air Using Potted Plants under Light and Dark Conditions

Category: Air Pollution and Health Effects

Volume: 19 | Issue: 5 | Pages: 1105-1113
DOI: 10.4209/aaqr.2018.09.0334
PDF | Supplemental material

Export Citation:  RIS | BibTeX

Tatiya Wannomai1, Patiya Kemacheevakul 1,2, Paitip Thiravetyan3

  • 1 Department of Environmental Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
  • 2 Center of Excellences on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
  • 3 School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand

Highlights

  • Trimethylamine (TMA) can be removed by various kinds of potted plants.
  • Light conditions have a significant effect on plant mechanism for TMA removal.
  • The highest TMA removal (95.4%) is achieved in Scindapsus aureus (light conditions).
  • Cactus has high removal efficiency under both light and dark conditions.

Abstract

A phytoremediation was evaluated as a solution for mitigating the fishy odor, or trimethylamine (TMA), that occurs in the seafood industry, including fresh markets. A synthetic TMA chemical was used to generate the fishy odor, and eight types of potted plants—Prickly pear cactus, Dracaena sanderiana Sander, Dieffenbachia camilla, Tradescantia spathacea, Peperomia magnoliifolia, Chlorophytum comosum, Cereus hexagonus (L.) Mill., and Scindapsus aureus—were selected as candidates for removing TMA in light and dark conditions. The results showed that S. aureus had the highest TMA removal efficiency in light conditions after 72 h (> 95%). However, it had very low efficiency under dark conditions, suggesting that S. aureus should be placed in locations with all-day light sources. On the other hand, cactus types (C. hexagonus (L.) Mill. and Prickly pear cactus) are highly efficient at removing TMA in both light and dark conditions after 72 h (> 90%) and may therefore be more suitable for real-world environments containing both light and dark conditions.

Keywords

Fishy odor Phytoremediation Trimethylamine Potted plant Light conditions


Related Article

Global Research Trends in Health Effects of Volatile Organic Compounds during the Last 16 Years: A Bibliometric Analysis

Shumin Cheng, Jiale Zhang, Yujing Wang, Daqing Zhang, Guopeng Teng, Guo-Ping Chang-Chien, Qianli Huang , Yu-Bo Zhang , Ping Yan
Article In Press
DOI: 10.4209/aaqr.2019.06.0327
PDF

Seasonal Variation, Source Apportionment and Health Risk Assessment of Heavy Metals in PM2.5 in Ningbo, China

Yue Wu, Beibei Lu, Xinlei Zhu, Aihong Wang, Meng Yang, Shaohua Gu, Xiaoxia Wang, Pengbo Leng, Kristina M. Zierold, Xiaohai Li, Ke Kerri Tang, Lanyun Fang, Ruixue Huang, Guozhang Xu , Lv Chen
Accepted Manuscripts
DOI: 10.4209/aaqr.2018.12.0452
PDF

Effects of Ambient PM2.5 Collected Using Cyclonic Separator from Asian Cities on Human Airway Epithelial Cells

Pratiti H. Chowdhury, Akiko Honda , Sho Ito, Hitoshi Okano, Toshinori Onishi, Makoto Higashihara, Tomoaki Okuda, Toshio Tanaka, Seitarou Hirai, Hirohisa Takano
Article In Press
DOI: 10.4209/aaqr.2019.01.0016
PDF
;