Articles online

Design and Development of a Novel Nanofiber Nasal Filter (NNF) to Improve Respiratory Health

Category: Air Pollution and Health Effects

Volume: 18 | Issue: 8 | Pages: 2064-2076
DOI: 10.4209/aaqr.2018.03.0086
PDF | Supplemental material

Export Citation:  RIS | BibTeX

To cite this article:
Han, T.T., Yang, L., Lee, K.B. and Mainelis, G. (2019). Design and Development of a Novel Nanofiber Nasal Filter (NNF) to Improve Respiratory Health. Aerosol Air Qual. Res. 18: 2064-2076. doi: 10.4209/aaqr.2018.03.0086.

Taewon T. Han 1, Letao Yang2, Ki-Bum Lee2,3, Gediminas Mainelis1

  • 1 Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
  • 2 Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
  • 3 College of Pharmacy, Kyung-Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea


A new hybrid filter for the NNF was fabricated using electrospinning technique.
The performance of NNF was successfully tested with 26 nm and 3.1 µm PSL particles.
The NNF showed higher collection efficiency compared to existing nasal filters.


Currently available nasal filters are not well-suited for protecting humans against the fine and ultrafine airborne particles. In this research, we designed and evaluated a novel nanofiber nasal filter (NNF) capable of reducing personal exposure not only to large allergenic particles but also to ultrafine particles, thus reducing respiratory health risks. A new hybrid filter (HF) medium for the NNF was fabricated by overlaying a carbon filter substrate with nylon nanofibers produced by electrospinning. After optimizing the filter’s production parameters, the HF was produced using the Nylon-6 polymer solution with a concentration of 15 wt%, a substrate based on a MERV 5 carbon filter with a density of 61 kg m–3, and a nanofiber surface coating density of 0.72 g m–2 (or 0.54 g m–2 as a second choice). The new HF was tested with fluorescent polystyrene latex beads sized 0.026–3.1 µm and at operating flow rates of 7.5–30 L min–1. The newly developed NNF showed more than a 90% collection efficiency for particles > 1 µm, representing bacteria and molds, and more than a 50% efficiency for particles < 0.5 µm, including ultrafine particles—about a 2.3-fold improvement compared to commercially available nasal filters. Thus, this NNF may serve as a useful tool to minimize our exposure to airborne pollutants.


Personal exposure Electrospinning Hybrid filter Carbon filter Ultrafine particles

Related Article

Seasonal Variations in PM2.5-induced Oxidative Stress and Up-Regulation of Pro-inflammatory Mediators

Juan Li, Yingying Liu, Zhen An, Wen Li, Xiang Zeng, Huijun Li, Jing Jiang, Jie Song, Weidong Wu
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.06.0288

Characteristics of Volatile Organic Compounds during Different Pollution Periods in Winter in Yuncheng, a Typical City in North China

Qianzhuo Gao, Yulong Yan , Rumei Li, Yang Xu, Yueyuan Niu, Chenglong Liu, Kai Xie, Zeiwei Chang, Dongmei Hu, Zhiyong Li, Lin Peng

Infants’ Neurodevelopmental Effects of PM2.5 and Persistent Organohalogen Pollutants Exposure in Southern Taiwan

Cheng-Chih Kao, Chih-Cheng Chen , Japheth L. Avelino, Mariene-syne P. Cortez, Lemmuel L. Tayo, Yi-Hsien Lin, Ming-Hsieh Tsai, Chu-Wen Lin, Yi-Chyun Hsu, Lien-Te Hsieh, Chieh Lin, Lin-Chi Wang, Kwong-Leung J. Yu, How-Ran Chao

Nanofiber Filter Performance Improvement: Nanofiber Layer Uniformity and Branched Nanofiber

Seong Chan Kim , Seungkoo Kang, Handol Lee, Dong-Bin Kwak, Qisheng Ou, Chenxing Pei, David Y.H. Pui
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.07.0343