OPEN ACCESS

Articles online

Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinction in Seoul

Category: MAPS-Seoul PM2.5 and Visibility

Volume: 18 | Issue: 9 | Pages: 2220-2229
DOI: 10.4209/aaqr.2017.10.0369
PDF

Export Citation:  RIS | BibTeX

To cite this article:
Park, S.M., Song, I.H., Park, J.S., Oh, J., Moon, K.J., Shin, H.J., Ahn, J.Y., Lee, M.D., Kim, J. and Lee, G. (2019). Variation of PM2.5 Chemical Compositions and their Contributions to Light Extinction in Seoul. Aerosol Air Qual. Res. 18: 2220-2229. doi: 10.4209/aaqr.2017.10.0369.

Seung-Myung Park1,2, In-Ho Song1, Jong Sung Park1, Jun Oh1,2, Kwang Joo Moon1, Hye Jung Shin1, Jun Young Ahn1, Min-Do Lee1, Jeonghwan Kim2, Gangwoong Lee 2

  • 1 Air Quality Research Division, National Institute of Environmental Research, Seo, Incheon 22689, Korea
  • 2 Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Gyeonggi 17035, Korea

Highlights

One-year measurement of aerosol chemical and optical properties was made in Seoul.
Aerosol light scattering and absorption extinction were 132.2 Mm–1 and 57.5 Mm–1.
The most dominant species for light extinction were OM and EC.
Current IMPROVE scheme underestimated aerosol light extinction by 30%.
Underestimation was mainly attributed to fresh OM and EC in urban conditions.


Abstract

The objective of this study was to determine comprehensive chemical components in PM2.5 from March 2011 till February 2012 in Seoul, South Korea, and their contributions to light extinction. Major chemical components in the aerosol were: ammonium sulfate, 30.3%; ammonium nitrate, 25.2%; organic matter, 21.3%; crustal mass, 16.9%; element carbon, 6.1%; and trace metals, 0.2%. PM2.5 mass concentrations and light extinction were mostly correlated in their diurnal and monthly variations, which indicates that the aerosol mass is the key variable in light extinction in Seoul. However, the aerosol size and composition (of PM2.5) also played significant roles in light extinction. We applied the IMPROVE algorithm to quantify the contributions of observed chemical components to light extinction. It was found that the IMPROVE formula tended to underestimate light extinction by up to 30% in urban conditions where large sources of organic matter (OM) and element carbon (EC) existed unless some revision was made before the light extinction calculations. The IMPROVE algorithm was further optimized for the observed light extinction for OM and EC. The revised light extinction efficiencies of OM and EC in Seoul increased by about 1.5–3 times of those in the original IMPROVE algorithm. The optimized IMPROVE scheme in this study reproduced the observed light extinction more accurately in Seoul. Overall, 41% of the contribution from OM and EC to light extinction in Seoul was close to 50% of the contribution from nitrate and sulfate, although the mass of the former contribution was only half of the latter.

Keywords

PM2.5 Visibility Light extinction OM EC


Related Article

Seasonal Variations in PM2.5-induced Oxidative Stress and Up-Regulation of Pro-inflammatory Mediators

Juan Li, Yingying Liu, Zhen An, Wen Li, Xiang Zeng, Huijun Li, Jing Jiang, Jie Song, Weidong Wu
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.06.0288
PDF

Infants’ Neurodevelopmental Effects of PM2.5 and Persistent Organohalogen Pollutants Exposure in Southern Taiwan

Cheng-Chih Kao, Chih-Cheng Chen , Japheth L. Avelino, Mariene-syne P. Cortez, Lemmuel L. Tayo, Yi-Hsien Lin, Ming-Hsieh Tsai, Chu-Wen Lin, Yi-Chyun Hsu, Lien-Te Hsieh, Chieh Lin, Lin-Chi Wang, Kwong-Leung J. Yu, How-Ran Chao
;