Articles online

Charging Effect on the 80–200 nm Size Atmospheric Aerosols during a Lightning Event

Category: Technical Note

Accepted Manuscripts
DOI: 10.4209/aaqr.2017.05.0178
PDF | RIS | BibTeX

Hong-Ku Lee1, Kang-Ho Ahn 2

  • 1 Department of Mechanical Engineering, Hanyang University, Seoul 04763, Korea
  • 2 Department of Mechanical Engineering, Hanyang University, Ansan 15588, Korea


We monitored atmospheric charged particles during a thunderstorm event.
When a thunderstorm passed, the aerosol charging balance was strongly perturbed.
Thunderstorm clouds have a strong effect on the atmospheric aerosol charging.
Particle charge polarity near the ground is dependent on CG lightning polarity.


Atmospheric aerosol charging is caused mainly by cosmic rays and/or natural radioactive material decay. Because the ionization process generates well-balanced ion pairs, positive and negative ions in the air are at almost the same concentrations. The atmospheric aerosol electrical charge is therefore usually neutral. We measured the particle charge polarity distribution in the atmosphere during a lightning event at ground level. We found that the 80–200 nm particle charge balance during a lightning event was skewed either to the positive or the negative. Furthermore, the particle charge polarity changed very rapidly (within a few minutes) from negative to positive or vice versa. There was also a two-fold higher charged particle fraction during a lightning period than a normal day. This increased charged particle fraction may decrease the total particle concentration in the atmosphere by deposition on raindrop surfaces.


Atmospheric particle charging Charging polarity reversal Lightning effect Charged cloud

Related Article

Simulating Long Range Transport of Radioactive Aerosols Using a Global Aerosol Transport Model

Tanmay Sarkar, Srinivasan Anand , Kapil Deo Singh, Raj Mangal Tripathi, Pradeepkumar Kunhiraman Sarojini, Daisuke Goto, Teruyuki Nakajima
Article In Press
DOI: 10.4209/aaqr.2017.01.0049

Deciphering Effects of Surface Charge on Particle Removal by TiO2 Polyacrylonitrile Nanofibers

Qian Zhang, Fang Liu, Tasi-Yu Yang, Xv Lv Si , Gong Ren Hu, Chang-Tang Chang
Volume: 17 | Issue: 7 | Pages: 1909-1916
DOI: 10.4209/aaqr.2016.07.0313

Enhanced Antimicrobial Activity on Non-Conducting and Conducting Air Filters by Using Air Ions and Grapefruit Seed Extract

Chang Gyu Woo, Hak-Joon Kim, Yong-Jin Kim, Bangwoo Han
Volume: 17 | Issue: 7 | Pages: 1917-1924
DOI: 10.4209/aaqr.2016.10.0466

A Low Cost System for Detecting Fog Events and Triggering an Active Fog Water Collector

Peter Weiss-Penzias , Daniel Fernandez, Robert Moranville, Chad Saltikov
Article In Press
DOI: 10.4209/aaqr.2016.11.0508