Articles online

Backward Integration of Diffusion Equation

Category: Air Pollution Modeling

Volume: 17 | Issue: 1 | Pages: 278-289
DOI: 10.4209/aaqr.2016.06.0271

Export Citation:  RIS | BibTeX

Wen-Yih Sun 1,2,3, Oliver M. Sun4

  • 1 Department of Earth, Atmospheric and Planetary Sciences, Purdue University, W. Lafayette, IN 47907, USA
  • 2 Department of Atmospheric Sciences, National Central University, Zhongli, Taoyuan City 32001, Taiwan
  • 3 Hydrospheric Atmospheric Research Center (HyARC), Nagoya University, Nagoya 464-8601, Japan
  • 4 Naval Undersea Warfare Center, Newport, RI 02841-1708, USA


Diffusion equation is converted to integral equations of concentration in 5 cells.
Diffusion is treated as subgrid-concentration-mass flux across cells’ boundaries.
They are successfully integrated in both forward and backward in time with diffusion.
Both integrated results very differ from Lagrangian-trajectory method without mixing.
They can be used to assess pollutants at sources from downwind region or vice versa.


When the parabolic differential equation is integrated backward in time, it can create unwanted shortwaves with large amplitude. Hence, instead of solving it as a differential equation, the diffusion equation is converted to the equations of volume-integrated-concentration, and mixing/diffusion is treated as subgrid-turbulent-fluxes across the cell boundaries. Those equations become a set of linear algebra equations and can be solved in both forward- and backward-in time. The proposed method has been validated by the numerical simulations of an idealized case, which consists of 5 different sizes of concentric cylinders with different species. The time evolution of compositions shows that the concentrations in each cylinder can change drastically with time. For the data collected at downwind region, the proposed reverse-in-time integration can be used to assess the concentrations at the source regions, which can be quite different from those derived from the conventional backward-trajectory method without mixing. It also shows that the traditional forward-trajectory or backward-trajectory method without mixing (i.e., Lagrangian method) widely used in meteorology and air pollution can misinterpret the property of fluid parcel at both upwind and downwind regions significantly.


Forward and backward integration Diffusion Parabolic and hyperbolic equations Mixing/Diffusion-time scale Turbulence Pollution

Related Article

Simulation-based Design of Regional Emission Control Experiments with Simultaneous Pollution of O3 and PM2.5 in Jinan, China

Haoyue Wang, Wenxuan Sui, Xiao Tang , Miaomiao Lu, Huangjian Wu, Lei Kong, Lina Han, Lin Wu, Weiguo Wang, Zifa Wang

A Dynamic Dust Emission Allocation Method and Holiday Profiles Applied to Emission Processing for Improving Air Quality Model Performance

Guanglin Jia, Zhijiong Huang , Yuanqian Xu, Zhuangmin Zhong, Qinge Sha, Xiaobo Huang, Jing Yang, Junyu Zheng