OPEN ACCESS

Articles online

Control of Bioaerosols in Indoor Environment by Filter Coated with Nanosilicate Platelet Supported Silver Nanohybrid (AgNPs/NSP)

Category: Bioaerosols

Volume: 16 | Issue: 9 | Pages: 2198-2207
DOI: 10.4209/aaqr.2016.06.0224
PDF | RIS | BibTeX

Jiung-Wen Chen1, Grace Whei-May Lee 1, Kai-Jie Chen1, Shin-Hao Yang2

  • 1 Graduate Institute of Environmental Engineering, National Taiwan University, Taipei 10617, Taiwan
  • 2 Department of Nutritional Science, Toko University, Chiayi County 61363, Taiwan

Highlights

Development of antimicrobial air filter using AgNPs/NSP with low toxicity.
Evaluation of antimicrobial effect by filtration test and HVAC simulation system.
Comparison of antimicrobial effect between two different relative humidity.


Abstract

Currently silver nanoparticles (AgNP)-modified filter are widely used to inactivate airborne microbes in indoor environment. However, AgNP is extremely small and thus will penetrate cells membranes to cause cytotoxicity. AgNPs/NSP has been proven to be less cytotoxic to human body. In this study, it was the first time that AgNPs/NSP was used to develop a new antimicrobial air filter with low cytotoxicity. The AgNPs/NSP filter was made by dip-coating of filter with AgNPs/NSP and acrylic resin solution and three different amount of silver on filter were obtained including 12.6, 31.5 and 63 ppm. The filtration efficiency and the antimicrobial activity of AgNP/NSP filter were evaluated by bioaerosols including Escherichia coli and Candida famata in testing chamber and HVAC simulation system under 30% and 70% relative humidity (RH). The results showed that filtration efficiency of AgNPs/NSP-modified filter increased by about 13 to 20% compared to unmodified filter for E. coli but remained almost the same for C. famata. The antimicrobial efficiency of AgNPs/NSP modified filter of 63 ppm was 95.1% for E. coli at RH of 30%. In addition, 91% of antimicrobial efficiency for C. famata was found at RH of 70%. On the other hand, the antimicrobial efficiency of yeast for AgNPs/NSP-modified filter was 97.8% and 86.4% for RH of 30% and 70% respectively when yeast just started to contact with filter in HVAC system. The results suggest that AgNP/NSP-modified air filter can effectively inactivate microorganisms retained on. Therefore, emission of bioaerosols from air filter can be avoided in order to improve the air cleaning technology in indoor environment.

Keywords

Silver nanoparticles Filtration Antimicrobial activity Airborne microbes Antimicrobial filter


Related Article

Assessment of Indoor Bioaerosols in Public Spaces by Real-Time Measured Airborne Particles

Hsiao-Lin Huang , Mei-Kuei Lee, Hao-Wun Shih
Volume: 17 | Issue: 9 | Pages: 2276-2288
DOI: 10.4209/aaqr.2017.02.0089
PDF

Fungal Bioaerosol Exposure and its Effects on the Health of Mushroom and Vegetable Farm Workers in Taiwan

Yenni Gustiani Tarigan, Ruey-Yu Chen, Hsiu-Chen Lin, Chia-Yi Jung, Kraiwuth Kallawicha, Ta-Pang Chang, Po-Chen Hung, Chih-Yong Chen, Hsing Jasmine Chao
Volume: 17 | Issue: 8 | Pages: 2064-2075
DOI: 10.4209/aaqr.2016.09.0401
PDF | Supplemental material

Ambient Fungal Spore Concentration in a Subtropical Metropolis: Temporal Distributions and Meteorological Determinants

Kraiwuth Kallawicha, Yi-Chen Chen, H. Jasmine Chao, Wei-Chiang Shen, Bing-Yu Chen, Yu-Chen Chuan, Yue Leon Guo
Volume: 17 | Issue: 8 | Pages: 2051-2063
DOI: 10.4209/aaqr.2016.10.0450
PDF
;