OPEN ACCESS

Articles online

Revelation of Coupling Biogenic with Anthropogenic Isoprene by Highly Time-Resolved Observations

Category: Urban Air Quality

Volume: 17 | Issue: 3 | Pages: 721-729
DOI: 10.4209/aaqr.2016.04.0133
PDF | Supplemental material

Export Citation:  RIS | BibTeX

Hsin-Cheng Hsieh1, Chang-Feng Ou-Yang1,2, Jia-Lin Wang 1

  • 1 Department of Chemistry, National Central University, Chungli 320, Taiwan
  • 2 Department of Atmospheric Sciences, National Central University, Chungli 320, Taiwan

Highlights

Two years of hourly data of isoprene in a major sub-tropical city are reported.
The shift between biogenic and anthropogenic sources of isoprene is clearly seen.
Dramatic acceleration of biogenic isoprene emission after 30°C is demonstrated.
Urban air quality could worsen in warm seasons due to excess isoprene emissions.


Abstract

Inter-annual variations of atmospheric isoprene in a major metropolis, Taipei, were reported based on a two-year continuous measurements of non-methane hydrocarbons (NMHCs) with an hourly resolution. It is by far the largest dataset ever collected in the urban subtropical environment with thriving vegetation and traffic flows. The dataset revealed the detailed interplay between the two major sources of biogenic and vehicular throughout the year. To separate the vehicular contribution from the biogenic one for the ambient isoprene, ethylene was used as an indicator of traffic emissions. While dramatic surge of isoprene was observed at noontime in hot months with the highest average peak mixing ratio of 1.6 ppbv in August, its abundance decreased to 0.2 ppbv on average in cold months. The vehicular contribution to ambient isoprene was largely masked over by the noontime surge of isoprene in hot seasons, but was still able to be vaguely observed on the slopes of the isoprene peaks mimicking the rush-hour features of ethylene. In winter, the diurnal variations of isoprene were very similar to those of ethylene, which suggests that ambient isoprene in cold months was almost of traffic origin.

This study based on the continuous dataset could enhance the key findings in previous flask studies in the same metropolis. While canister sampling had a major advantage of area coverage, the highly time-resolved fixed-site monitoring could better reveal the evolution process from a biogenically overwhelmed condition in hot months to the condition where the biogenic source weakened to reveal the traffic source in cold months.

Keywords

Photochemical assessment monitoring stations (PAMS) Ozone formation potentials (OFP) Secondary organic aerosols (SOA)


Related Article

Current Status of Fine Particulate Matter (PM2.5) in Vietnam’s Most Populous City, Ho Chi Minh City

Thi Hien To , Doan Thien Chi Nguyen, Nguyen Thao Nguyen, Xuan Vinh Le, Norimichi Takenaka, Huu Huy Duong

Consistency of Urban Background Black Carbon Concentration Measurements by Portable AE51 and Reference AE22 Aethalometers: Effect of Corrections for Filter Loading

Nicola Masey, Eliani Ezani, Jonathan Gillespie, Fiona Sutherland, Chun Lin, Scott Hamilton, Mathew R. Heal, Iain J. Beverland
Article In Press
DOI: 10.4209/aaqr.2019.03.0145
PDF

A Big Data Analysis of PM2.5 and PM10 from Low Cost Air Quality Sensors near Traffic Areas

Shida Chen, Kangping Cui , Tai-Yi Yu , How-Ran Chao, Yi-Chyun Hsu, I-Cheng Lu, Rachelle D. Arcega, Ming-Hsien Tsai, Sheng-Lun Lin, Wan-Chun Chao, Chunneng Chen, Kwong-Leung J. Yu
;