OPEN ACCESS

Articles online

Research into Haze Removal Method Based on Diffusion and Relative Motion

Category: Control Techniques and Strategy

Volume: 16 | Issue: 7 | Pages: 1757-1763
DOI: 10.4209/aaqr.2015.11.0650
PDF | RIS | BibTeX

Lian-Ze Wang , Hong-Tao Niu, Ning-Ning Peng, Xiong Shen

  • Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China

Highlights

Like Brownian diffusion of molecules, PM2.5 show intensive gradient diffusion.
Relative motion of device to polluted air has higher efficiency in large space.
The diffusion and relative motion could be used for haze removal.


Abstract

A method for purifying polluted air in large open space was proposed and verified based on concentration gradient diffusion theory and relative motion principle of purifying device to polluted air. As to the sources of particle emitting, the purifying device works as a sink no matter it is moving or not. Both indoor and outdoor experiments have been made. In the indoor experiment, severe haze environment was simulated by fuming. The purifying device was made of metal wire and carbon cloth. The fixed device took 2.7, 6.2 and 13 minutes to reduce the particle concentration in the 7 m farthest corner of the laboratory to 50%, 20% and 0 respectively. By moving the device at 1 m s–1, the concentration could be reduced to 50% in merely 15 seconds. In outdoor experiment, 23.5% decrease of haze concentration was measured.

Keywords

Concentration gradient Diffusion Relative motion Haze removal


Related Article

Improved Photocatalytic Air Cleaner with Decomposition of Aldehyde and Aerosol-Associated Influenza Virus Infectivity in Indoor Air

Kimiyasu Shiraki , Hiroshi Yamada, Yoshihiro Yoshida, Ayumu Ohno, Teruo Watanabe, Takafumi Watanabe, Hiroyuki Watanabe, Hidemitsu Watanabe, Masao Yamaguchi, Fumio Tokuoka, Shigeatsu Hashimoto, Masakazu Kawamura, Norihisa Adachi
Volume: 17 | Issue: 11 | Pages: 2901-2912
DOI: 10.4209/aaqr.2017.06.0220
PDF

High Selectivity of Visible-Light-Driven La-doped TiO2 Photocatalysts for NO Removal

Yu Huang, Jun-Ji Cao, Fei Kang, Sheng-Jie You, Chia-Wei Chang, Ya-Fen Wang
Volume: 17 | Issue: 10 | Pages: 2555-2565
DOI: 10.4209/aaqr.2017.08.0282
PDF

Laboratory Evaluation of a Manure Additive for Mitigating Gas and Odor Releases from Layer Hen Manure

Ji-Qin Ni , Albert J. Heber, Teng T. Lim, Sam M. Hanni, Claude A. Diehl
Volume: 17 | Issue: 10 | Pages: 2533-2541
DOI: 10.4209/aaqr.2016.07.0327
PDF
;