Articles online

Suppressive Effects of Silicon Dioxide and Diatomite Powder Aerosols on Coal Mine Gas Explosions in Highlands

Category: Aerosol and Atmospheric Chemistry

Volume: 16 | Issue: 9 | Pages: 2119-2128
DOI: 10.4209/aaqr.2015.11.0633

Export Citation:  RIS | BibTeX

Zhen-Min Luo 1, Fang-Ming Cheng1, Tao Wang1, Tao Wang1, Jun Deng1, Chi-Min Shu1,2

  • 1 School of Energy and Resources, Key Laboratory of Western Mine Exploitation and Hazard Prevention of Ministry of Education, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China
  • 2 Center for Process Safety and Industrial Disaster Prevention, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan


The suppressive effects of SiO2 and diatomite powder on gas explosion were studied.
Both of them could remarkably inhibit the explosion severity.
The suppressive effects were clearly affected by the aerosol type and size.
The inhibition mechanism of SiO2 and diatomite powder were proposed and discussed.


A gas explosion is the severest threat to the safety of coal mines, particularly in highlands. For effectively preventing gas explosions in coal mines, a quartz tube–based gas explosion test system with an open end and a nearly spherically confined gas explosion testing device were devised, fabricated, and tested. The suppressive effects of aerosols, here silicone dioxide (SiO2) and diatomite powder aerosols, of various sizes on mine gas explosions were studied. Scanning electron microscopy, low temperature nitrogen adsorption, and thermogravimetry analysis conducted on diatomite showed the porosity, effective specific surface area, adsorbability, and excellent thermal stabilities of the aerosols. Explosion suppression experiments confirmed that a test system of SiO2 and diatomite powder aerosols remarkably prolonged the gas explosion induction period and the time of peak explosion pressure and reduced the flame propagation rate. In addition, the test system reduced the maximum explosion pressure and maximum and average explosion overpressure rising rates. The suppressive effects were clearly affected by the aerosol type and size. Microscale diatomite powder aerosol exhibited a stronger suppressive effect than microscale SiO2 powder aerosol did. The porous structure and thermal characteristics of diatomite powder was vital in the suppression efficacy because they restrained the growth rate and activity of free radicals obtained through explosion reactions and eventually eliminated them. The adsorption of formaldehyde, a major intermediary of gas explosion, by diatomite powder decreased the quantity of free radicals, eventually suppressing explosions.


Diatomite powder aerosol Thermogravimetry analysis Specific surface area Peak explosion pressure Flame propagation rate

Related Article

Assessment of Carbonaceous Aerosols at Mount Tai, North China: Secondary Formation and Regional Source Analysis

Na Zheng, Shanjun Song , Xinglong Jin, Hongyan Jia, Yan Wang, Yaqin Ji, Liqiong Guo, Penghui Li
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.06.0316

Characteristics of Single Aerosol Particles during Pollution in Winter in an Urban Area of Ningbo, China

Meng-Rong Yang, Jun Zhou, Xiao-Rong Dai, Dominik van Pinxteren, Ming-Yang Cao, Mei Li , Hang Xiao