Articles online

Biological Toxicities of Exhausts from a Diesel-Generator Fueled with Water-Containing Acetone/Butanol and Waste-Edible-Oil-Biodiesel Blends

Category: Diesel Engine Emission

Volume: 15 | Issue: 7 | Pages: 2668-2675
DOI: 10.4209/aaqr.2015.10.0608
PDF | RIS | BibTeX

Jen-Hsiung Tsai1, Shui-Jen Chen 1, Kuo-Lin Huang1, Hso-Chi Chaung2, Wen-Yinn Lin3, Chih-Chung Lin1, Tsai-Yuan Wu1, Cheng-Hsien Yang1, Juei-Yu Chiu1

  • 1 Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung County, 91201, Taiwan
  • 2 Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung County, 91201, Taiwan
  • 3 Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City, 10608, Taiwan


Cytotoxicities of organic-solvent extracts of generator emissions were studied.
Bio-dieselhol with added acetone/butanol (A/B) reduced the U937 cell mortality.
The cell mortality decreased as the ratio of added water-containing A/B increased.


In this investigation, conventional diesel (D), 1–30 vol% waste-edible-oil-biodiesel (WEO-biodiesel, (W), 1–3 vol% pure/water-containing acetone (A/A'' (5% water content)) or 1–50 vol% butanol (B/B' (2% water content)/B'' (5% water content) were tested as fuels and their effects on the cytotoxicity of emissions from a generator at 3 kW load were studied. Human male single cells (U937) and the MTT (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide) method were used to test the cell toxicity of gas- and particle-phase samples (which were obtained by organic-solvent extraction). The results revealed that adding 1–3% acetone/water-containing acetone to bio-dieselhols reduced the mortality of U937 that were exposed to exhaust emissions organic-solvent extraction of to U937 when the generator was loaded at 3 kW. Adding more acetone/water-containing acetone further reduced the mortality of cells that were exposed to the emission gas from organic solvent extraction Compared with water-free butanol, using water-containing butanol (2% or 5%) added WEO-biodiesel further reduced the cytotoxicity (to U937) of organic solvent extracts from the emissions. The mortality of U937 decreased as the added butanol percentage increased in the range of 10−30% but increased as the added butanol percentage was increased to 40% or 50%. Therefore, the water-containing and -free acetone/butanol blending could reduce the toxicity of diesel-engine exhausts.


Biodiesel Acetone Butanol Water-containing Cytotoxicity

Related Article

Emissions of Polycyclic Aromatic Hydrocarbons and Particle-Bound Metals from a Diesel Engine Generator Fueled with Waste Cooking Oil-Based Biodiesel Blends

Sheng-Lun Lin, Jen-Hsiung Tsai, Shui-Jen Chen , Kuo-Lin Huang, Chih-Chung Lin, Ho-Tsang Huang, Yi-Chin Hsieh, Chuen-Huey Chiu
Volume: 17 | Issue: 6 | Pages: 1679-1689
DOI: 10.4209/aaqr.2017.04.0151

Effect of Butanol Blends on Nano Particle Emissions from a Stationary Conventional Diesel Engine

Mohit Raj Saxena, Rakesh Kumar Maurya
Volume: 16 | Issue: 9 | Pages: 2255-2266
DOI: 10.4209/aaqr.2016.04.0144

Characteristics of Persistent Organic Pollutant Emissions from a Diesel-Engine Generator Fueled Using Blends of Waste Cooking Oil-Based Biodiesel and Fossil Diesel

Jen-Hsiung Tsai, Shui-Jen Chen , Kuo-Lin Huang, Guo-Ping Chang-Chien, Wen-Yinn Lin, Chien-Wei Feng, Jin-Yuan Syu, Ho-Tsang Huang
Volume: 16 | Issue: 8 | Pages: 2048-2058
DOI: 10.4209/aaqr.2016.06.0257

Reducing Cold Start Emissions from Automotive Diesel Engine at Cold Ambient Temperatures

Arumugam Sakunthalai Ramadhas, Hongming Xu , Dai Liu, Jianyi Tian
Volume: 16 | Issue: 12 | Pages: 3330-3337
DOI: 10.4209/aaqr.2015.11.0616