OPEN ACCESS

Articles online

Boundary Layer Characteristics over a High Altitude Station, Mauna Loa Observatory

Category: Classification of and the Exchange between the Free Troposphere and Boundary Layer

Volume: 16 | Issue: 3 | Pages: 729-737
DOI: 10.4209/aaqr.2015.05.0347
PDF | RIS | BibTeX

Nimmi C.P. Sharma1, John E. Barnes 2

  • 1 Department of Physics and Engineering Physics, Central Connecticut State University, New Britain, CT, USA
  • 2 NOAA/Mauna Loa Observatory, Hilo, Hawaii, USA

Highlights

The unique boundary layer at Mauna Loa Observatory (3400 m) is examined.
A radiation wind flows upslope during the daytime and downslope during the nighttime.
The CLidar aerosol profiling method, finds three distinct zones above the observatory.
After sunset, a counter flow region forms above the downslope surface flow.
A transition at 4000 m caps a less convectively stable region with a more stable one.


Abstract

The unique boundary layer at Mauna Loa Observatory (3396 meters) is examined with a combination of radiosondes launched from the observatory and a novel aerosol profiling technique called CLidar or camera lidar. This boundary layer is influenced by a combination of radiation winds, due to the heating and cooling of the surrounding lava, and off-island winds. Typically an upslope surface wind forms after sunrise as the ground heats up. The reverse occurs after sunset as the ground cools and a temperature inversion, tens of meters thick forms. Aerosol increases for the first 90 to 160 meters and then decreases to free tropospheric levels. The 90 to 160 m aerosol peak indicates the vicinity of the upslope/downslope interface in the air flow. An upper transition is seen in the aerosol gradient at about 600 meters above the observatory (4000 m Above Sea Level). This transition is also seen in radiosonde potential temperature data. The sondes indicate that the air above the nighttime downslope surface region usually has an upslope component. Some of this counter-flowing air can be entrained in the downslope air, possibly influencing the sampling of aerosols and trace gases at the observatory.

Keywords

Boundary layer Aerosol Lidar CLidar High altitude station


Related Article

Experimental Evidence of the Feeding of the Free Troposphere with Aerosol Particles from the Mixing Layer

Evelyn Freney , Sellegri Karine, Asmi Eija, Rose Clemence, Chauvigne Aurelien, Baray Jean-Luc, Colomb Aurelie, Hervo Maxime, Montoux Nadege, Bouvier Laeticia, Picard David
Volume: 16 | Issue: 3 | Pages: 702-716
DOI: 10.4209/aaqr.2015.03.0164
PDF

Carbon Dioxide in the Free Troposphere and Boundary Layer at the Mt. Bachelor Observatory

Crystal D. McClure , Daniel A. Jaffe, Honglian Gao
Volume: 16 | Issue: 3 | Pages: 717-728
DOI: 10.4209/aaqr.2015.05.0323
PDF

Particle Climatology in Central East China Retrieved from Measurements in Planetary Boundary Layer and in Free Troposphere at a 1500-m-High Mountaintop Site

Xiaojing Shen, Junying Sun , Xiaoye Zhang, Niku Kiveka╠łs, Yangmei Zhang, Tingting Wang, Xiaochun Zhang, Yun Yang, Dezhong Wang, Yong Zhao, Dahe Qin
Volume: 16 | Issue: 3 | Pages: 689-701
DOI: 10.4209/aaqr.2015.02.0070
PDF
;