Articles online

Size Evolution of Sodium Combustion Aerosol with Various RH%

Category: Physical and Chemical Characteristics of Aerosols

Volume: 15 | Issue: 6 | Pages: 2270-2276
DOI: 10.4209/aaqr.2015.03.0150
PDF | RIS | BibTeX

Amit Kumar, Venkatesan Subramanian , Ramakrishnan Baskaran, Balasubramanian Venkatraman

  • Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102, India


The initial size distribution of sodium combustion aerosol is independent of mass concentration.
The size of aerosol increases by absorption of moisture.
Hygroscopic growth particle size is dominant in the mass concentration of about 0.5 g m–3.
Coagulation growth particle size is dominant in the mass concentration of about 3.0 g m–3.
Higher the RH%, the particle enlargement is also found higher.


Studies on sodium aerosol characteristics are very important for fast reactor safety. Physical and chemical changes that occur at various times at various atmospheric conditions to sodium aerosols would results particles in various diameters. In this context, a study has been conducted in Aerosol Test Facility, Radiological Safety Division, in which sodium combustion aerosols were generated in a controlled manner and made to hover in a confined volume. The particle diameter (Mass Median Diameter - MMD) is measured on-line with progress of time by using Mastersizer. The experiments are conducted by generating aerosols in two different mass concentrations viz. 3.0 g m–3 and 0.5 g m–3 and in three different relative humidity conditions viz. 20%, 50% and 90% to show the influence of relative humidity on the particle diameter. A theoretical simulation of particle growth due to coagulation is drawn and compared with the experimental value. It is observed that sodium combustion aerosols size grow due to absorption of moisture (hygroscopic growth) in the initial period of times say in first 20 minutes followed by Brownian coagulation. An empirical relation is determined based on the difference between coagulation growth and experimental observation and applied to match experimental observation of particle diameter. A detailed experimental procedure, theoretical simulation and comparison of results of particle growth between experimental observation and theoretical simulation are presented in this paper.


Sodium combustion Aerosol size Growth Relative humidity

Related Article

An Investigation of the Variability of Particulate Emissions from Woodstoves in New Zealand

Guy Coulson , Richard Bian, Elizabeth Somervell
Volume: 15 | Issue: 6 | Pages: 2346-2356
DOI: 10.4209/aaqr.2015.02.0111

A Long Term Study on Characterization and Source Apportionment of Particulate Pollution in Klang Valley, Kuala Lumpur

Shamsiah Abdul Rahman , Mohd Suhaimi Hamzah, Md Suhaimi Elias, Nazaratul Ashifa Abdullah Salim, Azian Hashim, Shakirah Shukor, Wee Boon Siong, Abdul Khalik Wood
Volume: 15 | Issue: 6 | Pages: 2291-2304
DOI: 10.4209/aaqr.2015.03.0188
PDF | Supplemental material

Micro-Morphological Characteristics and Size Distribution of PM2.5 in the Kuitun-Dushanzi Region of Xinjiang, China

Dilinuer Talifu, Ayikezi Wuji, Yalkunjan Tursun, Hong Kang, Ying Hu, Yuhong Guo, Longyi Shao
Volume: 15 | Issue: 6 | Pages: 2258-2269
DOI: 10.4209/aaqr.2015.01.0053

Source Specific Cyto- and Genotoxicity of Atmospheric Aerosol Samples

Ágnes Filep , Luka Drinovec, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Zoltán Bozóki, Regina Hitzenberger, Gábor Szabó
Volume: 15 | Issue: 6 | Pages: 2325-2331
DOI: 10.4209/aaqr.2015.03.0131