Articles online

Comparison of Nanoparticle Exposure Levels Based on Facility Type—Small-Scale Laboratories, Large-Scale Manufacturing Workplaces, and Unintended Nanoparticle-Emitting Workplaces

Category: Air Pollution and Health Effects

Volume: 15 | Issue: 5 | Pages: 1967-1978
DOI: 10.4209/aaqr.2015.03.0141
PDF | RIS | BibTeX

Seunghon Ham1, Sunju Kim1, Naroo Lee2, Pilje Kim3, Igchun Eom3, Perng-Jy Tsai4, Kiyoung Lee1, Chungsik Yoon 1

  • 1 Department of Environmental Health, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, (null), Korea
  • 2 Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
  • 3 Risk Assessment Division, National Institute of Environmental Research, Incheon, Korea
  • 4 Department of Environmental and Occupational Health, Medical College, National Cheng Kung University, Tainan, Taiwan


Nanoparticles were characterized by types and size of workplaces.
Exposure and size characteristics were depend on the size and type of production.
Airborne nano particle was low in lab while was high in welding workplace.
Specific risk management strategies are required to reduce nano particle exposure.


The aims of this study were to investigate the concentrations and characteristics of nanoparticle exposure at various workplaces. We compared the concentration and characteristics of nanoparticles at nine workplaces of three types; i.e., small laboratories (LAB), large-scale engineered nanoparticle manufacturing workplaces (ENP), and unintended nanoparticle-emitting workplaces (UNP), using real-time monitoring devices including scanning mobility particle sizers (SMPS), condensation particle counters (CPC), surface area monitors (SAM), and gravimetric sampling. ANOVA and Scheffe’s post hoc tests were performed to compare the concentration based on the type of workplace. The concentrations at UNPs were higher than those at other types of workplace for all measured metrics followed by (in order) ENP manufacturing workplaces and LAB (p < 0.01). Geometric means and geometric standard deviations of LAB, ENP, and UNP for total number concentration measured using SMPS were 8,458 (1.41), 19,612 (2.18), and 84,172 (2.80) particles cm–3, respectively. For CPC, the concentrations were 6,143 (1.45), 11,955 (2.42), and 38,886 (2.61) particles cm–3, respectively. The surface area concentrations were 32.79 (1.46), 93.68 (2.60), and 358.41 (2.74) μm2 cm–3, respectively. The characteristics of exposure and size distributions differed among the workplaces. Some tasks or processes at LAB exhibited higher concentrations than those at ENP or UNP workplaces, and LAB showed the lowest concentration. In conclusion, we observed different exposure characteristics at LAB, ENP, and UNP suggesting that different risk management strategies are required.


Nanoparticle exposure assessment Laboratories Engineered nanoparticle Unintended

Related Article

Long-term Multiple Chemical Exposure Assessment for a Thin Film Transistor Liquid Crystal Display (TFT-LCD) Industry

Ying-Fang Wang, Shih-Min Wang, Yu-Chieh Kuo, Chungsik Yoon, Ya-Fen Wang, Perng-Jy Tsai
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.08.0299

PM2.5 Meets Blood: in vivo Damages and Immune Defense

Xiangyu Zhang, Jingjing Kang, Haoxuan Chen, Maosheng Yao , Jinglin Wang
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.05.0167

Polycyclic Aromatic Hydrocarbons (PAHs) at High Mountain Site in North China: Concentration, Source and Health Risk Assessment

Jing Liu, Yan Wang, Peng-Hui Li , You-Ping Shou , Tao Li, Min-Min Yang, Lei Wang, Jun-Jie Yue, Xian-Liang Yi, Li-Qiong Guo
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.08.0288

PM2.5-Bound PAHs in Indoor and Outdoor of Hotels in Urban and Suburban of Jinan, China: Concentrations, Sources, and Health Risk Impacts

Yanyan Li, Lingxiao Yang , Xiangfeng Chen, Ying Gao, Pan Jiang, Junmei Zhang, Hao Yu, Wenxing Wang
Volume: 17 | Issue: 10 | Pages: 2463-2473
DOI: 10.4209/aaqr.2017.08.0286