OPEN ACCESS

Articles online

Size Distribution and Optical Properties of Particulate Matter (PM10) and Black Carbon (BC) during Dust Storms and Local Air Pollution Events across a Loess Plateau Site

Category: Physical and Chemical Characteristics of Aerosols

Volume: 15 | Issue: 6 | Pages: 2212-2224
DOI: 10.4209/aaqr.2015.02.0109
PDF | RIS | BibTeX

Wei Pu, Xin Wang , Xueying Zhang, Yong Ren, Jin-Sen Shi, Jian-Rong Bi, Bei-Dou Zhang

  • Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, 730000, China

Highlights

The dominant sources of aerosols were obviously complex.
The seasonal particle number distribution increased in cold season.
The fine-mode particles were dominant in the cold season.
The coarse-mode particles were likely attributable to dust events.


Abstract

We analyzed the suspended particle size distribution in the range of 0.5 to 10 µm and the optical properties of the particles from March 2007 to December 2010 at a site on the Loess Plateau (SACOL; 35.57°N, 104.08°E; 1965.8 m a.s.l.) about 48 km southeast of the center of Lanzhou. The results indicated that the variation in PM10 was much larger in spring than in winter because of frequent dust events or local blowing soil dust during spring. The highest number concentrations of coarse-mode particles were likely attributable to dust events that transported mineral dust or soil dust in the spring season, caused by cold fronts or strong local winds. In contrast, the fine-mode particles that dominated in the cold season at SACOL were probably indicative of anthropogenic sources related to fossil-fuel combustion and biomass burning. The comparison of dust events and anthropogenic air pollution shows a clear distinction of lower PM10 with higher Bap for pollution episodes and higher PM10 with lower Bap for dust events. These findings suggest that the results in the cold season were likely attributable to light absorption of black carbon, and the coarse mode particles were dominant during dust events in spring.

Keywords

Dust storms Local air pollutants Aerosol scattering coefficient Aerosol absorption coefficient PM10 Black carbon


Related Article

An Investigation of the Variability of Particulate Emissions from Woodstoves in New Zealand

Guy Coulson , Richard Bian, Elizabeth Somervell
Volume: 15 | Issue: 6 | Pages: 2346-2356
DOI: 10.4209/aaqr.2015.02.0111
PDF

A Long Term Study on Characterization and Source Apportionment of Particulate Pollution in Klang Valley, Kuala Lumpur

Shamsiah Abdul Rahman , Mohd Suhaimi Hamzah, Md Suhaimi Elias, Nazaratul Ashifa Abdullah Salim, Azian Hashim, Shakirah Shukor, Wee Boon Siong, Abdul Khalik Wood
Volume: 15 | Issue: 6 | Pages: 2291-2304
DOI: 10.4209/aaqr.2015.03.0188
PDF | Supplemental material

Micro-Morphological Characteristics and Size Distribution of PM2.5 in the Kuitun-Dushanzi Region of Xinjiang, China

Dilinuer Talifu, Ayikezi Wuji, Yalkunjan Tursun, Hong Kang, Ying Hu, Yuhong Guo, Longyi Shao
Volume: 15 | Issue: 6 | Pages: 2258-2269
DOI: 10.4209/aaqr.2015.01.0053
PDF

Source Specific Cyto- and Genotoxicity of Atmospheric Aerosol Samples

Ágnes Filep , Luka Drinovec, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Zoltán Bozóki, Regina Hitzenberger, Gábor Szabó
Volume: 15 | Issue: 6 | Pages: 2325-2331
DOI: 10.4209/aaqr.2015.03.0131
PDF
;