OPEN ACCESS

Articles online

Persistent Organic Pollutants (POPs) on Fine and Coarse Atmospheric Particles Measured at Two (Urban and Industrial) Sites

Category: Air Toxics

Volume: 15 | Issue: 5 | Pages: 1894-1905
DOI: 10.4209/aaqr.2015.02.0118
PDF | Supplemental material | RIS | BibTeX

Mustafa Odabasi 1, Banu Cetin2, Abdurrahman Bayram1

  • 1 Department of Environmental Engineering, Faculty of Engineering, Dokuz Eylul University, Kaynaklar Campus, 35160 Buca, Izmir, Turkey
  • 2 Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, Kocaeli, Turkey

Highlights

Particulate POPs were mostly associated with fine PM (> 50%).
Fine PM fraction of POPs significantly increased with KOA.
Fine PM percent decreased with temperature and wind speed.
Dry deposition velocity substantially decreased with increasing fine PM fraction.


Abstract

Particle size is an important parameter in terms of human health effects, fate and transport of pollutants associated with particulate matter (PM). Persistent organic pollutant (POP) (i.e., PAHs, PCBs, PBDEs, and OCPs) concentrations were measured on fine (dp < 2.5 µm) and coarse (2.5 µm < dp < 10 µm) aerosol samples collected at two (Urban and Industrial) sites in Izmir, Turkey. POP concentrations were ~2 times higher at the Industrial site due to the local sources (i.e., scrap processing iron-steel plants, ship-breaking activities, a petroleum refinery, and a petrochemical plant) that were recently shown to be hot spots emitting these pollutants. The size distribution of particle-phase POPs indicated that they were mostly (> 50%) associated with fine PM. The larger contribution of all POP compounds to fine PM could be attributed to the higher sorption capacity of fine PM because of its relatively higher organic matter content compared to coarse PM. Fine PM fraction of POPs significantly increased with octanol-air partition coefficient (KOA) (p < 0.01) since larger KOA values favor the partitioning of POPs to PM. Relationships between fine PM percent and meteorological parameters (i.e., temperature and wind speed) were also investigated. Fine PM percent decreased with temperature and the correlations were significant for 51% of the compounds (p < 0.01), suggesting that the decrease in KOA with increasing temperature results in less partitioning to PM. Fine PM fraction also decreased with wind speed (p < 0.01 for the 52% of the compounds) that could be attributed to increased resuspension of contaminated coarse particles with increasing wind speed. Using the experimental deposition velocities reported for several POPs in the study area it was shown that dry particle deposition velocity significantly decreases with increasing fine PM fraction (p < 0.01). This indicates that the increase in fine fraction of POPs with decreasing volatility may have important implications for their environmental fate and transport.

Keywords

POPs Gas-particle partitioning Particle size distribution


Related Article

Coarse-Particle Passive-Sampler Measurements and Single-Particle Analysis by Transmitted Light Microscopy at Highly Frequented Motorways

Zhaoxue Tian, Volker Dietze, Frank Sommer, Anja Baum, Uwe Kaminski, Jan Sauer, Christoph Maschowski, Peter Stille, Kuang Cen, Reto Gieré
Volume: 17 | Issue: 8 | Pages: 1939-1953
DOI: 10.4209/aaqr.2017.02.0064
PDF

Sensitivity Analysis of PM2.5-Bound Total PCDD/Fs-TEQ Content: In the Case of Wuhu City, China

Weiwei Wang, Kangping Cui , Rong Zhao, Jinning Zhu , Qianli Huang, Wen-Jhy Lee
Article In Press
DOI: 10.4209/aaqr.2017.11.0507
PDF

Gas- and Water-Phase PAHs Emitted from a Single Hydrogen-Oxygen PEM Fuel Cell

Kuo-Lin Huang , Tsung-Hsuan Tsai, Shui-Jen Chen, How-Ran Chao, Yi-Ming Kuo, Jen-Hsiung Tsai
Article In Press
DOI: 10.4209/aaqr.2017.10.0410
PDF
;