OPEN ACCESS

Articles online

Bonding Structure and Mineral Analysis of Size Resolved Atmospheric Particles nearby Steelmaking Industrial Sites in Australia

Category: Urban Air Quality

Volume: 16 | Issue: 7 | Pages: 1638-1650
DOI: 10.4209/aaqr.2015.02.0076
PDF | RIS | BibTeX

Kazi Mohiuddin 1,2, Vladimir Strezov1, Peter F. Nelson1, Tim Evans1

  • 1 Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
  • 2 Department of Civil Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh

Highlights

Atmospheric particles from Australian urban and industrial sites were analysed.
The –CO group was found abundant (> 75%) in ultrafine particles (< 180 nm).
Hydroxyl groups of surface OH on crystals, and salt hydrate were strongly identified.
Hematite mineral was found dominant in the coarse (≤ 79%) and fine particles (≤ 99%).


Abstract

Comprehensive understanding of organic and inorganic compounds in atmospheric particles of different size fractions ranging from coarse to ultrafine is essential for assessment of the impact of particles on the radiation balance. In this work the size resolved atmospheric particles were collected in the vicinity of three iron and steelmaking sites and one urban background site in Australia using an eight staged micro orifice uniform deposit impactor (MOUDI) sampler. The sampled particles were assessed using FTIR technique to determine the dominant functional groups, and XRD technique for determining the mineral content of the inorganic compounds. This study revealed variable distributions between and among bonding groups in urban and industrial areas. The hydroxyl (–OH) group (in alcohol compounds, surface OH on crystals, salt hydrate), aliphatic carbon (–CH2) group (in methylene compounds, n-alkane), carbonyl (–CO) group (in acid halide, aryl carbonate, ketone, conjugated ketone), and amino (–NH2) group (in primary amino compounds such as n-butylamine) in atmospheric particles were identified and most likely originated from combustion processes (industrial, transport, and domestic), sea spray, long range transport particles, and secondary organic particles sources nearby industrial and urban areas. Hematite mineral in the inorganic fraction of the atmospheric particles was found predominantly in the vicinity of the iron and steelmaking industries, which most likely originates from raw materials handling and process emissions.

Keywords

Atmospheric particles Steelworks FTIR XRD Hematite


Related Article

Ground-Level NO2 in Urban Beijing: Trends, Distribution, and Effects of Emission Reduction Measures

Nianliang Cheng, Yunting Li , Dawei Zhang, Tian Chen, Feng Sun, Fan Meng, Chen Chen, Bingfen Cheng
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.02.0092
PDF

How the Atmosphere over Eastern Himalaya, India is Polluted with Carbonyl Compounds? Temporal Variability and Identification of Sources

Chirantan Sarkar, Abhijit Chatterjee , Dipanjali Majumdar, Arindam Roy, Anjali Srivastava, Sanjay K. Ghosh, Sibaji Raha
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.01.0048
PDF

Comparison of PM2.5 Exposure in Hazy and Non-Hazy Days in Nanjing, China

Ting Zhang, Steven N. Chillrud, Junfeng Ji , Yang Chen, Masha Pitiranggon, Wenqing Li, Zhenyang Liu, Beizhan Yan
;