OPEN ACCESS

Articles online

Improving the Removal Efficiency of Elemental Mercury by Pre-Existing Aerosol Particles in Double Dielectric Barrier Discharge Treatments

Category: Air Pollution and Health Effects

Volume: 15 | Issue: 4 | Pages: 1506-1513
DOI: 10.4209/aaqr.2014.12.0334
PDF | RIS | BibTeX

Qing Li1, Jingkun Jiang 1,2, Lei Duan1, Jianguo Deng1, Lun Jiang3, Zhen Li1, Jiming Hao1,2

  • 1 State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
  • 2 State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
  • 3 Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Highlights

Double dielectric barrier discharge (DDBD) system was developed to remove Hg0.
Pre-existing aerosols in DDBD treatment can improve the Hg0 removal efficiency.
Inorganic aerosol particles perform better than organic ones.
These pre-existing aerosol particles can be collected in the DDBD system.
Possible mechanisms have also been discussed for the high removal efficiency.


Abstract

Plasma technology has been employed for the removal of gaseous elemental mercury (Hg0) from simulated flue gases without pre-existing airborne particles. This study developed a double dielectric barrier discharge (DDBD) treatment system, in which two coaxial electrodes were covered by quartz dielectrics, for removing mercury with the presence of aerosol particles. The increase in pre-existing aerosol surface concentration can improve Hg0 removal efficiency up to 160% in the DDBD device. Inorganic aerosol particles (sodium chloride) perform better than organic ones (sucrose) in improving Hg0 removal efficiency. These aerosol particles can be collected in the DDBD system. For sodium chloride particles, a collection efficiency of more than 90% was observed in the tested diameter range of 10–100 nm. The improvement in Hg0 removal with the presence of particles is possibly due to that (i) aerosol particles provide additional surface for surface-induced Hg0 oxidations, (ii) reactive species (such as Cl) generated by plasma etching particle surface rapidly react with Hg0, and (iii) charged particles can in-flight adsorb mercury species.

Keywords

Mercury removal Aerosol particles Plasma DDBD Pollution control


Related Article

Elemental Composition of PM2.5 Particles Sampled in Industrial and Residential Areas of Taif, Saudi Arabia

Abdallah A. Shaltout , Johan Boman, Dhaif-allah R. Al-Malawi, Zuhair F. Shehadeh
Volume: 13 | Issue: 4 | Pages: 1356-1364
DOI: 10.4209/aaqr.2012.11.0320
PDF

Intra-Urban Levels, Spatial Variability, Possible Sources and Health Risks of PM2.5 Bound Phthalate Esters in Xi’an

Jingzhi Wang, Zhibao Dong, Xiaoping Li, Meiling Gao, Steven Sai Hang Ho, Gehui Wang, Shun Xiao, Junji Cao

Spatial and Temporal Trends of Short-Term Health Impacts of PM2.5 in Iranian Cities; a Modelling Approach (2013-2016)

Philip K. Hopke, Seyed Saeed Hashemi Nazari, Mostafa Hadei, Maryam Yarahmadi, Majid Kermani, Elham Yarahmadi, Abbas Shahsavani

Airborne Particulate Matter: An Investigation of Buildings with Passive House Technology in Hungary

Krisztina Szirtesi , Anikó Angyal, Zoltán Szoboszlai, Enikő Furu, Zsófia Török, Titusz Igaz, Zsófia Kertész
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.05.0158
PDF
;