OPEN ACCESS

Articles online

Using a Mobile Measurement to Characterize Number, Surface Area, and Mass Concentrations of Ambient Fine Particles with Spatial Variability during and after a PM Episode

Category: Urban Air Quality

Volume: 16 | Issue: 6 | Pages: 1416-1426
DOI: 10.4209/aaqr.2014.12.0311
PDF | Supplemental material

Export Citation:  RIS | BibTeX

Chin-Yu Hsu1, Ming-Yeng Lin2, Hung-Che Chian1, Mu-Jean Chen1, Tzu-Yu Lin1, Yu-Cheng Chen 1,3

  • 1 National Environmental Health Research Center, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli 35053, Taiwan
  • 2 Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138, Sheng-Li Road, Tainan 70428, Taiwan
  • 3 Department of Occupational Safety and Health, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan

Highlights

Particle size distribution differed during and after PM episode.
PM episode had lower spatial contrast in particle concentrations.
The occurrence of PM episode resulted in lower number concentrations.
Local sources and wind speed after PM episode mainly affect particle patterns.


Abstract

Fine particles play a key role in regional air quality deterioration. Commonly used central-site monitoring data, which offer rough determinations of spatial particulate matter (PM) distributions, is insufficient to estimate potential local emissions or population exposure levels. This study characterizes the spatial variability of fine particles in suburban and rural regions during and after a winter episode of elevated PM (PM episode). Commercial instruments of high time resolution in a mobile laboratory platform were deployed to measure the distribution, number, surface area, and mass concentrations of fine particles. Spatial variations of those particle properties were mainly affected by regional feature, PM episode, local primary source and wind speed. Particle concentrations and size distributions were found to differ considerably during and after PM episode. The PM episode was found to exhibit a lower degree of spatial concentration contrast with respect to particle number, surface area and mass, where similar particle size patterns were distributed across all study regions with decreased particle number under nucleation and Aitken modes and increased number under the accumulation mode. The mobile measurement may supplement information on spatial particle distributions for estimating levels of population exposure and for characterizing detailed physical properties of short-term, high-exposed scenarios.

Keywords

Fine particle Mobile laboratory platform Episode Spatial variation


Related Article

Characteristics of PM10 Levels Monitored for More Than a Decade in Subway Stations in South Korea

Sangjun Choi, Ju-Hyun Park, Seo-Yeon Bae, So-Yeon Kim, Hyaejeong Byun, Hyunseok Kwak, Sungho Hwang, Jihoon Park, Hyunhee Park, Kyong-Hui Lee, Won Kim, Dong-Uk Park
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.05.0263
PDF

Reduction in Carbon Dioxide Emission and Energy Savings Obtained by Using a Green Roof

Lu Cai, Xiao-Ping Feng , Jing-Yan Yu, Qian-Chao Xiang, Rui Chen
Accepted Manuscripts
DOI: 10.4209/aaqr.2019.09.0455
PDF
;