OPEN ACCESS

Articles online

Measurement and Analysis of Fine Particulate Matter (PM2.5) in Urban Areas of Pakistan

Category: Aerosol Chemistry and Urban Air Quality

Volume: 15 | Issue: 2 | Pages: 426-439
DOI: 10.4209/aaqr.2014.10.0269
PDF | Supplemental material | RIS | BibTeX

Anjum Rasheed1, Viney P. Aneja 1, Anantha Aiyyer1, Uzaira Rafique2

  • 1 Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA
  • 2 Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, Pakistan

Highlights

We examine spatial and temporal changes in fine PM2.5 in urban areas of Pakistan.
PM2.5 mass concentration is analyzed in Islamabad, Lahore, Peshawar and Quetta.
Urban PM2.5 concentration exceeds Pakistan’s National Environmental Quality Standards.
The role of meteorology and the origin of air masses on PM2.5 air pollution is analyzed.


Abstract

In order to assess the extent of air quality within the major urban environments in Pakistan, PM2.5 pollutant has been analyzed during the period 2007–2011 in Islamabad; and 2007 to 2008 in Lahore, Peshawar and Quetta (high elevation, 1680 m MSL). Seasonal and diurnal variations of PM2.5 mass concentration formation and accumulation within these areas have been analyzed. Air quality monitoring data and meteorological data (both QA/QCed) were obtained from Federal and Provincial Pakistan Environmental Protection Agencies. In Islamabad, the annual average PM2.5 mass concentrations were 81.1 ± 48.4 µg/m3, 93.0 ± 49.9 µg/m3, 47.8 ± 33.2 µg/m3, 79.0 ± 49.2 µg/m3, and 66.1 ± 52.1 µg/m3 during 2007 to 2011 respectively. Comparison of the four cities during summer 2007 to spring 2008 shows that all the four cities had PM2.5 concentration exceeding the Pakistan National Environmental Quality Standards (annual average concentration of 25 µg/m3; and 24 hourly average concentration of 40 µg/m3) for ambient air. During the same time period, the highest seasonal PM2.5 mass concentrations for Islamabad were observed as 98.5 µg/m3 during spring 2008; 150.4 ± 87.9 µg/m3; 104.1 ± 51.1 µg/m3 and 72.7 ± 55.2 µg/m3 for Lahore, Peshawar, and Quetta during fall 2007, respectively. Wind speed and temperature have a negative correlation with the mass concentration of PM2.5. Diurnal profile for all the cities suggests an association of PM2.5 with vehicular traffic. Back trajectory analysis conducted using the NOAA HYSPLIT model indicates that air trajectories, during high pollution episodes, influencing the urban regions commonly originate from either western India, especially in summer as part of the prevailing monsoon circulation; or are located in eastern Afghanistan. The source areas in Western India i.e., states of Gujarat, Rajasthan and Punjab have high concentration of industrial activities and crop residue burning, and are likely sources of enhanced PM2.5 concentrations, in addition to the local sources.

Keywords

Pakistan Fine particulate matter Pollution Meteorology


Related Article

Backward Integration of Diffusion Equation

Wen-Yih Sun , Oliver M. Sun
Volume: 17 | Issue: 1 | Pages: 278-289
DOI: 10.4209/aaqr.2016.06.0271
PDF

Predicting Common Air Quality Index – The Case of Czech Microregions

Petr Hajek , Vladimir Olej
Volume: 15 | Issue: 2 | Pages: 544-555
DOI: 10.4209/aaqr.2014.08.0154
PDF

Characterization and Elemental Composition of Atmospheric Aerosol Loads during Springtime Dust Storm in Western Saudi Arabia

Mansour A. Alghamdi , Mansour Almazroui, Magdy Shamy, Maria Ana Redal, Abdulrahman K. Alkhalaf, Mahmoud A. Hussein, Mamdouh I. Khoder
Volume: 15 | Issue: 2 | Pages: 440-453
DOI: 10.4209/aaqr.2014.06.0110
PDF | Supplemental material
;