Articles online

Decomposition of Organic Chemicals in the Air and Inactivation of Aerosol-Associated Influenza Infectivity by Photocatalysis

Category: Bioaerosols

Volume: 15 | Issue: 4 | Pages: 1469-1484
DOI: 10.4209/aaqr.2014.10.0256
PDF | RIS | BibTeX

Tohru Daikoku1, Masaya Takemoto1, Yoshihiro Yoshida1, Tomoko Okuda1, Yasuaki Takahashi2, Kanji Ota2, Fumio Tokuoka3, Akira T. Kawaguchi4, Kimiyasu Shiraki 1

  • 1 Department of Virology, University of Toyama, 2360 Sugitani, Toyama 930-0194, Japan
  • 2 OTA Incorporated, 5-10-7 Minamisuna, Koto-ku, Tokyo 136-0076, Japan
  • 3 Shonan Ceramics Corporation, 32-3 Horikawa, Hadano, Kanagawa 259-1305, Japan
  • 4 Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan


An air cleaner consisted of two porous ceramic boards coated with nano-sized TiO2.
The surface of the porous ceramic for photocatalysis was 14,864 m2 in the cleaner.
The system decomposed 80% of particulate and gaseous dioxins and acetaldehyde.
Aerosol-associated influenza infectivity was inactivated within 5 min.


Efficiency of photocatalysis depends on the surface area and materials, and we have prepared a porous ceramic substrate coated with nanosized-TiO2 for a photocatalytic air cleaner. The surface of the porous ceramic was coated with nano-sized TiO2 and total surface area of the board (30 × 30 × 1 cm) was 7,432 m2, being 14,864 m2 as the total area in the cleaner consisting of two boards and intervened black lamps. Eighty percent of 5 ppm acetaldehyde was decomposed and generated 8 ppm of carbon dioxide for 3 hours efficiently and continuously by passing through the TiO2-coated ceramic (5 × 10 × 1 cm) under black light. Particulate dioxins (40 pg/m3) and gaseous dioxins (16 pg/m3) were removed by 7.5 and 2.8 pg/m3 by passing through four TiO2-coated ceramic (30 × 30 × 2 cm) under black-light, indicating about 80% of dioxin was decomposed by the photocatalysis. This photocatalysis system was applied for inactivation of influenza aerosol. Influenza infection is spread efficiently by inhalation of aerosol-associated influenza virus. The aerosol-associated infectivity produced by nebulizer in a 754 liter cubic space was more than 10,000 plaque-forming units and was detectable for up to 30 minutes. The aerosol-associated infectivity of influenza virus was eliminated within five minutes by a photocatalytic air cleaner. The infectious aerosol-associated influenza would accumulate by the continuous production by cough and sneeze in the closed space, resulting in the efficient influenza infection. Thus a photocatalytic air cleaner efficiently decomposed organic chemicals including acetaldehyde and dioxins and inactivated aerosol-associated influenza virus infectivity.


Dioxins Acetaldehyde Airborne infection Nanosized-TiO2

Related Article

Seasonal and Diurnal Characteristics of Carbonyls in Urban Air in Qinzhou, China

Song-Jun Guo, Mei Chen , Xiao-Lang He, Wei-Wei Yang, Ji-Hua Tan
Volume: 14 | Issue: 6 | Pages: 1653-1664
DOI: 10.4209/aaqr.2013.12.0351

Fungal Bioaerosol Exposure and Its Effects on the Health of Mushroom and Vegetable Farm Workers in Taiwan

Yenni Gustiani Tarigan, Ruey-Yu Chen, Hsiu-Chen Lin, Chia-Yi Jung, Kraiwuth Kallawicha, Ta-Pang Chang, Po-Chen Hung, Chih-Yong Chen, Hsing Jasmine Chao

Ambient Fungal Spore Concentration in a Subtropical Metropolis: Temporal Distributions and Meteorological Determinants

Kraiwuth Kallawicha, Yi-Chen Chen, H. Jasmine Chao, Wei-Chiang Shen, Bing-Yu Chen, Yu-Chen Chuan, Yue Leon Guo
Article In Press
DOI: 10.4209/aaqr.2016.10.0450