OPEN ACCESS

Articles online

Atmospheric Deposition Modeling of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans and Polychlorinated Biphenyls in the Ambient Air of Southern Taiwan. Part II. Wet Depositions and Total Deposition Fluxes

Category: Articles

Volume: 14 | Issue: 7 | Pages: 1966-1985
DOI: 10.4209/aaqr.2014.07.0150
PDF | RIS | BibTeX

Yu-Jung Tseng1, Hsiao-Hsuan Mi 2, Lien-Te Hsieh 3, Wei-Tung Liao4, Guo-Ping Chang-Chien5

  • 1 Department of Environmental Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan
  • 2 Department of Environmental Engineering & Science, Chia Nan University of Pharmacy and Science, Tainan 71743, Taiwan
  • 3 Department of Environmental Engineering and Science, National Pingtung University of Science and Technology, No. 1, Shuefu Road, Neipu, Pingtung 91201, Taiwan
  • 4 Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, No. 1, Nan-Tai Street, Yungkang Dist., Tainan 71005, Taiwan
  • 5 Super Micro Mass Research and Technology Center, Cheng Shiu University, 840, Chengching Road, Kaohsiung 83347, Taiwan

Highlights

The wet deposition flux increased with rainfall intensity.
The simulated wet deposition results are dominated by particulate phase.
The average total PCDD/F and PCB-TEQ2005 (dry + wet) flux was high in winter.


Abstract

The wet deposition flux increased with stronger rainfall intensity. From the congener profiles of PCDD/F and PCB WHO-TEQ2005 total deposition fluxes, 2,3,4,7,8-PeCDF, 2,3,4,6,7,8-HxCDF, 1,2,3,4,7,8-HxCDF and 1,2,3,7,8-PeCDD dominate the deposition fluxes. PCB-126 and PCB169 are the two most significant congeners that dominate the PCB WHO-TEQ2005. The simulated results show that the monthly PCDD/F and PCB wet deposition fluxes during 2012 were in the range of 9.26–265 pg WHO-TEQ2005/m2-month and 0.205–9.38 pg WHO-TEQ/m2-month, respectively. The monthly PCDD/F and PCB wet deposition fluxes during 2013 were 0.152–211 pg WHO-TEQ2005/m2-month and 0.00823–6.84 pg WHO-TEQ/m2-month, respectively. Wet deposition mainly occurs in the high rainfall intensity seasons, such as summer. The simulated results indicate that wet deposition is dominated by the particulate phase. Regarding the annual PCDD/F and PCB total (dry + wet) WHO-TEQ2005 deposition fluxes, dry deposition fluxes account for 68.0–73.9%. Among these, PCDD/Fs dominate the total deposition (95.9–96.1%) and PCBs contribute only 3.9–4.1%. The average total PCDD/F and PCB-TEQ2005 deposition (dry + wet) flux in winter (317–429 pg WHO-TEQ/m2-month) was 1.46–2.63 times higher than that in summer (163–216 pg WHO-TEQ/m2-month).

Keywords

PCDD/Fs PCBs Wet deposition Scavenging


Related Article

Atmospheric Deposition of Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans in Two Cities of Southern China

Jinning Zhu, Haiyan Tang, Jin Xing, Wen-Jhy Lee , Ping Yan , Kangping Cui
Volume: 17 | Issue: 7 | Pages: 1798-1810
DOI: 10.4209/aaqr.2017.05.0177
PDF

Atmospheric Deposition of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans at Coastal and High Mountain Areas in Taiwan

Chandra Suryani R., Wen-Jhy Lee , Endah Mutiara M.P. , John Kennedy Mwangi, Lin-Chi Wang, Neng-Huei Lin, Guo-Ping Chang-Chien
Volume: 15 | Issue: 4 | Pages: 1390-1411
DOI: 10.4209/aaqr.2015.04.0246
PDF

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137
PDF

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062
PDF
;