OPEN ACCESS

Articles online

Suppression of Cluster Ions during Rapidly Increasing Particle Number Concentration Events in the Environment

Category: Aerosol and Atmospheric Chemistry

Volume: 15 | Issue: 1 | Pages: 28-37
DOI: 10.4209/aaqr.2014.05.0106
PDF | RIS | BibTeX

E. Rohan Jayaratne, Xuan Ling, Lidia Morawska

  • International Laboratory for Air Quality and Health, Institute for Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia

Highlights

Atmospheric particles suppress cluster ion concentrations.

The degree of suppression is enhanced during particle burst events.

A pyrotechnic display removed cluster ions completely for a short time.

Biomass burning episodes removed cluster ions from the atmosphere.

Cluster ions were suppressed near busy roads.


Abstract

We show that the cluster ion concentration (CIC) in the atmosphere is significantly suppressed during events that involve rapid increases in particle number concentration (PNC). Using a neutral cluster and air ion spectrometer, we investigated changes in CIC during three types of particle enhancement processes – new particle formation, a bushfire episode and an intense pyrotechnic display. In all three cases, the total CIC decreased with increasing PNC, with the rate of decrease being greater for negative CIC than positive. We attribute this to the greater mobility, and hence the higher attachment coefficient, of negative ions over positive ions in the air. During the pyrotechnic display, the rapid increase in PNC was sufficient to reduce the CIC of both polarities to zero. At the height of the display, the negative CIC stayed at zero for a full 10 min. Although the PNCs were not significantly different, the CIC during new particle formation did not decrease as much as during the bushfire episode and the pyrotechnic display. We suggest that the rate of increase of PNC, together with particle size, also play important roles in suppressing CIC in the atmosphere.

Keywords

Aerosol particle Charged particle Particle formation Bushfire


Related Article

Ozone and Secondary Organic Aerosol Formation of Toluene/NOx Irradiations under Complex Pollution Scenarios

Linghong Chen, Kaiji Bao, Kangwei Li, Biao Lv, Zhier Bao, Chao Lin, Xuecheng Wu, Chenghang Zheng , Xiang Gao, Kefa Cen
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.05.0179
PDF

Chemical Composition of Diesel/Biodiesel Particulate Exhaust by FTIR Spectroscopy and Mass Spectrometry: Impact of Fuel and Driving Cycle

Olga B. Popovicheva , Cornelia Irimiea, Yvain Carpentier, Ismael K. Ortega, Elena D. Kireeva, Natalia K. Shonija, Jaroslav Schwarz, Michal Vojtíšek-Lom, Cristian Focsa
;