OPEN ACCESS

Articles online

A Programmable Aerosol Diluter for Generating Time-Varied Sub-Micrometer Particles

Category: Articles

Volume: 14 | Issue: 7 | Pages: 1838-1850
DOI: 10.4209/aaqr.2014.02.0032
PDF | RIS | BibTeX

Qiaoling Liu, Da-Ren Chen

  • Particle Lab, Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23294, USA

Highlights

Programmable aerosol dilutor for generating time-varied sub-micrometer particles.
Minimal particle loss in the studied dilutor.
Producing aerosol in program-controlled number concentration.
Simple model to describe the dynamic dilution performance of studied dilutor.


Abstract

Real-world aerosols often vary over time. A time-varied aerosol generation system is thus needed to evaluate the performance of aerosol sensors for characterizing time-dependent aerosol size distribution. However, all laboratory aerosol generators are designed for the production of aerosols with stable concentrations and steady size distributions. A simple way to produce reliable time-dependent aerosols is to combine a stable aerosol generator with a programmable aerosol diluter. Aerosol diluters are also needed to measure aerosols in high concentrations using existing aerosol instruments. In this study we focused on the design and evaluation of a programmable aerosol diluter. The dilution flow rate of the aerosol diluter was controlled by a programmable mass flow controller with a flow rate of up to 200 L/min. Steady and dynamic dilution processes in the diluter were programmed using Visual Basic. Experiments were carried out to characterize the steady and dynamic dilution performance of the aerosol diluter for DMA-classified particles with sizes ranging from 10 nm to 1.0 µm. The steady dilution result shows that the diluter has a non-size dependent dilution performance, and there is a good linear relationship between the aerosol dilution ratio and dilution flow rate ratio (with a calibrated line slope of 1.03, close to the ideal line slope of 1.0). Our experiments further indicate that efficient aerosol mixing in the diluter can be achieved when operated at a flow Reynolds number above 450. The evaluation of four dynamic dilution modes also provides evidence of the excellent performance of the diluter, which has the capability of continuously producing well-defined and concentration-varied aerosols. A simple empirical model was also proposed to describe the steady and dynamic dilution performance of the diluter.

Keywords

Diluter Dilution ratio Dynamic aerosol Programmable control


Related Article

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137
PDF

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062
PDF

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob
Volume: 12 | Issue: 1 | Pages: 1-7
DOI: 10.4209/aaqr.2011.09.0150
PDF
;