OPEN ACCESS

Articles online

Enhancement of Air Filter with TiO2 Photocatalysis for Mycobacterium Tuberculosis Removal

Category: Bioaerosols and Health Effects

Volume: 15 | Issue: 2 | Pages: 600-610
DOI: 10.4209/aaqr.2014.01.0009
PDF | RIS | BibTeX

Chuleewan Thunyasirinon1, Pipat Sribenjalux2, Sitthisuntorn Supothina3, Paradee Chuaybamroong 4

  • 1 Public Health Program, Graduate School, Khon Kaen University, (null), Thailand
  • 2 Department of Clinical Microbiology, Faculty of Associated Medical Sciences, Khon Kaen University, (null), Thailand
  • 3 National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency, (null), Thailand
  • 4 Department of Environmental Science, Faculty of Science and Technology, Thammasat University, (null), Thailand

Highlights

Low grade and high grade air filters enhanced with photocatalysis could be used for TB control.
Dark and light conditions have the effect on properties of TiO2 coated filter.
Longer UVA initiation period could enhance the bacterial removal efficiency.


Abstract

HEPA filter is normally recommended for removal of Mycobacterium tuberculosis from the airstream. Due to its high cost, a cheaper air-filter substitution is proposed in this study. Both low- and high-grade glass fiber air filters were coated with 5% TiO2 using either polyethylene glycol (PEG), Silane (Si-69), or DURAMAX (D-3005) as a binder. The coated filter was placed in a test duct and irradiated with UVA at an intensity of 4.85 ± 0.41 mW/cm2 to investigate photocatalysis for M. tuberculosis. The effects of dark and light conditions as well as initial exposure to UVA on bacterial removal were studied. Silver-doped and iron-doped TiO2 at different concentrations were also tested using face velocities of 0.1 and 1 m/s and humidity levels of 50 ± 10% and 70 ± 10% RH.

The most appropriate binder for coating TiO2 onto filters was 3% D3005. Using 0.1% metal-doping, 100% removal efficiencies were found. Dark/light conditions affected the hydrophobic/hydrophilic properties of TiO2-coated filters and the removal efficiencies. The removal rate could be increased by extending the warm up period of the lamps. When the face velocity was increased, the removal efficiency dropped in both filters. Similarly, high humidity adversely affected the removal efficiency, particularly with the coated high grade air filter.

Keywords

Tuberculosis Binder Microorganism disinfection TiO2 immobilized filter Air filter


Related Article

Seasonal and Diurnal Variations of Fluorescent Bioaerosol Concentration and Size Distribution in the Urban Environment

Sampo Saari , JarkkoV. Niemi, Topi Rönkkö, Heino Kuuluvainen, Anssi Järvinen, Liisa Pirjola, Minna Aurela, Risto Hillamo, Jorma Keskinen
Volume: 15 | Issue: 2 | Pages: 572-581
DOI: 10.4209/aaqr.2014.10.0258
PDF

Inhalation Risk Assessment of PAH Exposure Due to Combustion Aerosols Generated from Household Fuels

Mahesh Tiwari, Sanjay Kumar Sahu, Gauri Girish Pandit
Volume: 15 | Issue: 2 | Pages: 582-590
DOI: 10.4209/aaqr.2014.03.0061
PDF

UV-Tolerant Culturable Bacteria in an Asian Dust Plume Transported over the East China Sea

Kazutaka Hara , Daizhou Zhang, Hiromi Matsusaki, Yasuhiro Sadanaga, Keisuke Ikeda, Sayuri Hanaoka, Shiro Hatakeyama
Volume: 15 | Issue: 2 | Pages: 591-599
DOI: 10.4209/aaqr.2014.03.0067
PDF
;