Articles online

Indirect Evidence for the Presence of Secondary Phosphorus in Continental Fine Aerosol

Category: Aerosol and Atmospheric Chemistry

Volume: 15 | Issue: 1 | Pages: 38-45
DOI: 10.4209/aaqr.2013.11.0332
PDF | RIS | BibTeX

Krisztina Krassován1, Zsófia Kertész2, Kornélia Imre3, András Gelencsér 1,3

  • 1 Institute of Environmental Sciences, University of Pannonia, PO Box 158, Veszprém, H-8201, Hungary
  • 2 Institute for Nuclear Research Hungarian Academy of Sciences, Laboratory of Ion Beam Applications, PO Box 51, Debrecen, H-4001, Hungary
  • 3 MTA-PE Air Chemistry Research Group, PO Box 158, Veszprém, H-8201, Hungary


We determined mass size distribution of aerosol phosphorus.
The contribution of biomass burning to fine-mode P was determined.
Excess P is defined as a difference between total and biomass-related fine P.
Excess P is suggested to form in atmospheric reactions of gaseous phosphine.
Secondary phosphorus could be important in the long-range transport of P.


The role of the atmosphere in the biogeochemical cycle of phosphorus (P) is generally associated with the emission of soil dust, sea-salt particles, bioaerosols and industrial aerosols. Quite independently, a reduced gaseous phosphorus compound (phosphine, PH3) was measured over various sources such as marshes and sewage plants and also in the global troposphere. Given that phosphine is a reactive gas that rapidly yields low-volatility phosphoric acid in the atmosphere, secondary aerosol formation can be an important sink that has never been considered in the global phosphorus cycle. In our study we present mass size-distribution measurements of phosphorus in aerosol samples collected at two locations in Hungary. The bimodal size distribution of phosphorus indicated two distinct formation mechanisms in the fine (d < 1 µm) and coarse modes (d > 1 µm). As expected, the mass concentration of phosphorus was dominated by the coarse particles; the contribution of fine mode phosphorus to the total was in the range of 11–61% (median 19%). The contribution of biomass burning and to a lesser extent bioaerosols to the fine mode phosphorus was inferred from measured ambient potassium (K) concentrations and P/K ratios reported for biomass smoke. It was found that biomass burning accounted for only a small fraction of fine mode phosphorus, the rest of which likely formed as secondary aerosol component from gaseous phosphine. Secondary aerosol phosphorus can be even more important in providing this essential nutrient for remote ecosystems because it is associated with fine aerosol particles which have longer residence time and thus are more prone to long-range atmospheric transport than coarse primary particles.


Phosphine Secondary phosphorus Fine aerosol PIXE

Related Article

Analysis of Aerosol Composition and Assessment of Tunnel Washing Performance within a Mass Rapid Transit System in Taiwan

Ying-Yi Chen, Chung-Yen Lu, Pei-Chun Chen, I-Fang Mao, Mei-Lien Chen
Volume: 17 | Issue: 6 | Pages: 1527-1538
DOI: 10.4209/aaqr.2017.03.0120
PDF | Supplemental material

Organochlorinated Compounds in the Air at NAEO, an Eastern Background Site in China: Long-Range Atmospheric Transport versus Local Sources

Di Liu, Yue Xu , Jun Li, Chakra Chaemfa, Chongguo Tian, Xiang Liu, Chunling Luo, Gan Zhang
Volume: 14 | Issue: 4 | Pages: 1258-1268
DOI: 10.4209/aaqr.2013.01.0026

Two Way Relationship between Aerosols and Fog: A Case Study at IGI Airport, New Delhi

Pramod Digambar Safai , Sachin Ghude, Prakash Pithani, Somnath Varpe, Rachana Kulkarni, Kiran Todekar, Suresh Tiwari, Dilip Motiram Chate, Thara Prabhakaran, Rajendra Kumar Jenamani, Madhavan Nair Rajeevan
Accepted Manuscripts
DOI: 10.4209/aaqr.2017.11.0542

Trend in Fine Sulfate Concentrations and the Associated Secondary Formation Processes at an Urban Site in North China

Yating Zhang, Liang Wen, Jianmin Chen, Xinfeng Wang , Likun Xue, Lingxiao Yang, Liwei Wang, Zeyuan Li, Chuan Yu, Tianshu Chen, Wenxing Wang