OPEN ACCESS

Articles online

Aerosol Characteristics and Radiative Forcing during Pre-Monsoon and Post-Monsoon Seasons in an Urban Environment

Category: Articles

Volume: 14 | Issue: 1 | Pages: 99-107
DOI: 10.4209/aaqr.2013.05.0154
PDF | RIS | BibTeX

Khan Alam 1,2, Najm us Sahar1, Yaseen Iqbal1

  • 1 Institute of Physics and Electronics, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
  • 2 Higher Education Commission (HEC) of Pakistan, (null), Pakistan

Abstract

The present study reports on aerosol characteristics and radiative properties utilizing ground based Aerosol Robotic Network (AERONET) data for the pre-monsoon (March, April, May) and post-monsoon (September, October, November) seasons over Lahore, Pakistan, for the two years during 2009–2010. The Aerosol Optical Depth (AOD) data from AERONET and a Moderate Resolution Imaging Spectro-radiometer (MODIS) were compared in order to validate both systems. The correlation coefficient for the post-monsoon season was > 0.68 in comparison to > 0.66 for the pre-monsoon season. In the pre-monsoon season, AERONET and MODIS AOD values were in the range of 0.2 to 1.2, and 0.2 to 1.67, respectively. For the post-monsoon season, these values were in the range of 0.17 to 2.46, and 0.15 to 2.45 for AERONET and MODIS, respectively. Strong dust loading resulted in higher values for the coarse particles during the pre-monsoon period, followed by an increase in the absorbing anthropogenic aerosols with the change from the pre-monsoon to post-monsoon season. The higher dust loading corresponded to the higher values of the real part of the refractive index in the pre-monsoon season, causing a relatively large single scattering albedo (SSA) (0.85–0.915) and thus a higher value for the asymmetry parameter (ASY). Similarly, the higher value of absorbing anthropogenic aerosols resulted in a higher value for the imaginary part of the refractive index in the post-monsoon period, followed by relatively lower values for SSA (0.88–0.911) and ASY. The averaged aerosol radiative forcing (ARF) for the pre-monsoon period at the top of the atmosphere was –19 ± 6 W/m2, while at the surface it was –93 ± 22 W/m2 leading to an atmospheric forcing of +74 ± 16 W/m2. Likewise, the averaged ARF for the post-monsoon period at the top of the atmosphere was –28 ± 8 W/m2, while at the surface it was –98 ± 24 W/m2 leading to an atmospheric forcing of +70 ± 15 W/m2, indicating significant heating of the atmosphere.

Keywords

AERONET MODIS Pre-monsoon Post-monsoon AOD ARF SSA ASY


Related Article

Classification of Aerosols in an Urban Environment on the Basis of Optical Measurements

Khan Alam , Kausar Shaheen, Thomas Blaschke, Farrukh Chishtie, Hidayat Ullah Khan, Bibi Safia Haq
Volume: 16 | Issue: 10 | Pages: 2535-2549
DOI: 10.4209/aaqr.2016.06.0219
PDF

Seasonal Chemical Characteristics of Atmospheric Aerosol Particles and its Light Extinction Coefficients over Pune, India

Atar Singh Pipal, Suresh Tiwari, P. Gursumeeran Satsangi
Volume: 16 | Issue: 8 | Pages: 1805-1819
DOI: 10.4209/aaqr.2015.08.0529
PDF

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137
PDF

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062
PDF
;