Articles online

Factors Affecting Filter Penetration and Quality Factor of Particulate Respirators

Category: Articles

Volume: 13 | Issue: 1 | Pages: 162-171
DOI: 10.4209/aaqr.2012.07.0179
PDF | RIS | BibTeX

Sheng-Hsiu Huang1, Chun-Wan Chen2, Yu-Mei Kuo3, Chane-Yu Lai4, Roy McKay5, Chih-Chieh Chen 1

  • 1 National Taiwan University, Taipei 10617, Taiwan
  • 2 Institute of Occupational Safety and Health, New Taipei City 22143, Taiwan
  • 3 Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
  • 4 Chung Shan Medical University, Taichung 40201, Taiwan
  • 5 University of Cincinnati, Cincinnati, Ohio 45221, USA


In the present study, a theoretical model was used to examine factors affecting the filtration characteristics of filters used for respiratory protection. This work was designed to support the particulate filter test requirements established in 1996. The major operating parameters examined in this work include face velocity, fiber diameter, packing density, filter thickness, and fiber charge density. Characteristics of the most penetrating particle size were also modeled with the same operating parameters.

The results showed that aerosol penetration through electret filter media increases with increasing face velocity and increasing fiber diameter, and decreases as packing density, filter thickness or fiber charge density increase. Face velocity and fiber charge density have more significant effects on filter quality than the other factors. Filter quality increases with decreasing face velocity or increasing fiber charge density. For electret filters, (1) the most penetrating particle size increases with increasing fiber diameter; (2) an increase in packing density, thickness, or fiber charge density would cause the most penetrating particle size to decrease, and (3) the most penetrating particle size through electret filters increases with increasing face velocity and decreasing filter thickness. On the other hand, for non-electret filter media, the most penetrating particle size increases with decreasing face velocity, and the filter quality factor is not affected by filter thickness.


Respirator Filter Filtration model

Related Article

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob
Volume: 12 | Issue: 1 | Pages: 1-7
DOI: 10.4209/aaqr.2011.09.0150