Articles online

Indoor and Outdoor Chemical Components of PM2.5 in the Rural Areas of Northwestern China

Category: Articles

Volume: 12 | Issue: 6 | Pages: 1157-1165
DOI: 10.4209/aaqr.2012.01.0003
PDF | RIS | BibTeX

Chong-Shu Zhu 1, Jun-Ji Cao 1,2, Zhen-Xing Shen3, Sui-Xin Liu1, Ting Zhang1, Zhu-Zi Zhao1, Hong-Mei Xu1, Er-Ke Zhang4

  • 1 Key Laboratory of Aerosol, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, China
  • 2 Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, China
  • 3 Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
  • 4 Northwest Supervision Center, Ministry of Environmental Protection, (null), China


A case study of indoor and outdoor fine particles (PM2.5) was undertaken for rural areas in northwestern China, and quantitative data was obtained on their chemical composition including carbon fractions, water soluble ions, and elements. OM (organic matter), sulfate, and geological material dominated PM2.5, followed by nitrate and ammonium, which accounted for 78–85% of the mass for indoor and outdoor environments. The variations of the carbon fractions indicated that four OC factions and EC1 were more abundant in winter than in summer. SO42− contributions were the highest of the ionic species for indoor and outdoor environments (about 40% of total ions in winter and 53% in summer), followed by NO3 (about 23% in winter and 14% in summer). The integrated results from the ratios of K+/OC, K+/EC, and as well as the EF (enrichment factor) values for K, Cl, S and Pb, indicate that the biofuel contributions were significant in the rural area. The indoor/outdoor ratios and correlations of the components were also investigated. The results for the indoor and outdoor PM2.5 sources showed that biomass burning in summer was the dominant primary source (31% for indoor and 44% for outdoor), and those for winter were coal combustion (21% for indoor and 29% for outdoor) and biomass burning (24% for indoor and 16% for outdoor). Due to the local patterns of energy consumption, the discussion presented in this work could give implications for future strategies to improve rural air quality.


Fine particles Rural area Chemical components Northwestern China

Related Article

Investigation of Aerosol Optical Depth (AOD) and Ångström Exponent over the Desert Region of Northwestern China Based on Measurements from the China Aerosol Remote Sensing Network (CARSNET)

Jie Yu, Huizheng Che , Quanliang Chen, Xiangao Xia, Hujia Zhao, Hong Wang, Yaqiang Wang, Xiaoye Zhang, Guangyu Shi
Volume: 15 | Issue: 5 | Pages: 2024-2036
DOI: 10.4209/aaqr.2014.12.0326

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob
Volume: 12 | Issue: 1 | Pages: 1-7
DOI: 10.4209/aaqr.2011.09.0150