OPEN ACCESS

Articles online

Removal of Particle-bound Water-soluble Ions from Cooking Fume Using Bio-solution Wet Scrubber

Category: Articles

Volume: 11 | Issue: 5 | Pages: 508-518
DOI: 10.4209/aaqr.2011.02.0012
PDF | RIS | BibTeX

Lien-Te Hsieh 1,2, Ya-Fen Wang3, Pomin Li4, Kuan-Chung Chen1,2

  • 1 Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, 1 Shuefu Fu Road, Pingtung 912, Taiwan
  • 2 Emerging Compounds Research Center (ECOREC), National Pingtung University of Science and Technology, 1 Shuefu Fu Road, Pingtung 912, Taiwan
  • 3 Department of Bioenvironmental Engineering and R&D Center of Membrane Technology, Chung Yuan Christian University, Chung-Li, 320, Taiwan
  • 4 Department of Biomechatronics Engineering , National Pingtung University of Science and Technology, 1 Shuefu Fu Road, Pingtung 912, Taiwan

Abstract

Wet scrubbers are one of the most important air-pollution control devices (APCDs) for the simultaneous removal of various acidic gases and particulates. This study was conducted on a lab-scale self-designed wet scrubber (WSB) system for the treatment of particle-bound water-soluble ions emitted from cooking fumes with/without adding bio-solution (namely, NOE-7F). The concentration and composition of eight particle-bound water-soluble ions in the three situations were determined. Three situations include (i) particle-bound water soluble ions in the cooking fume exhaust without applying WSB or NOE-7F treatment; (ii) treating particle-bound water soluble ions in the cooking fume exhaust with applying WSB without adding NOE-7F; and (iii) treating particle-bound water soluble ions in the cooking fume exhaust with applying WSB and adding NOE-7F_50X/100X/200X. The particle-bound water-soluble ions samples were collected and then chemical analysis of the eight water soluble ionic species (Na+, K+, NO2-, Mg2+, Ca2+, Cl-, NO3-, and SO42-) was conducted by ion chromatography. The result indicated that adding NOE-7F bio-solution by diluted 200 folds into wet scrubber water and forming blended circulation water has the good removal efficiencies and reaches removal efficiencies higher than 80% for both Na+ (86.6%) and Cl- (85.9%). The addition of NOE-7F in the influent water had the enhanced effect on the particle-bound water-soluble ions removal and mainly promoted highly the hydrophilicity of particle-bound water-soluble ions in the water scrubber. The combination of both water scrubber and NOE-7F addition has a high potential for practical application.

Keywords

Bio-solution Particle-bound water-soluble ions Removal efficiencies Wet scrubbers


Related Article

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137
PDF

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062
PDF