OPEN ACCESS

Articles online

Distribution of Nanoparticles near a Major U.S. and Canada Trade Bridge: Comparison of Simulations with Field Data

Category: Articles

Volume: 13 | Issue: 1 | Pages: 3-12
DOI: 10.4209/aaqr.2011.01.0004
PDF | RIS | BibTeX

Kambiz Nazridoust1, Goodarz Ahmadi1, Chaosheng Liu1, Andrea R. Ferro2, Timothy R. McAuley3, Peter A. Jaques4, Philip K. Hopke 4

  • 1 Department of Mechanical & Aeronautical Engineering, Clarkson University, Potsdam, N.Y. 13699, USA
  • 2 Department of Civil & Environmental Engineering, Clarkson University, Potsdam, N.Y. 13699, USA
  • 3 Consulting for Health, Air, Nature, & a Greener Environment (CHANGE), Queensbury, N.Y. 12804, USA
  • 4 Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY 13699, USA

Abstract

Dispersion of ultrafine particles arising from traffic emissions on a major international bridge (the Peace Bridge) between U.S. and Canada was studied during the summer of 2004. A computational model for evaluating the transport and dispersion of vehicular emissions from the Peace Bridge Complex (PBC) into the downwind neighborhood was developed to improve the estimation of ultrafine particle number concentrations in this area of Buffalo, New York. An unstructured computational grid of the Peace Bridge and its vicinity was generated and the mean airflow was simulated using the standard k-ε turbulence model in the FLUENTTM code (ANSYS, Inc, Canonsburg, PA). A Discrete Random Walk (DRW) model was used to simulate the instantaneous turbulence fluctuating velocity. A Lagrangian particle-tracking model was used to simulate the transport and dispersion of particles from the motor vehicles on the bridge and in the Peace Bridge Plaza area. The particle transport model accounts for the drag and Brownian forces acting on the particle, as well as the gravitational sedimentation effects. These results were compared with a series of particle size distribution measurements made over the region of interest. For particulate emissions measured in the size range of 16 to 166 nm, the simulated size-fractionated particle concentrations show agreement with the field measurements with estimated errors of approximately 15%. These results suggest that CFD modeling could provide the basis for reasonable estimates of the exposure from specific major roads in the downwind area.

Keywords

Particle number concentrations Size-distribution Peace bridge Computer model Lagrangian


Related Article

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137
PDF

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062
PDF

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob
Volume: 12 | Issue: 1 | Pages: 1-7
DOI: 10.4209/aaqr.2011.09.0150
PDF
;