Articles online

Determination of Dicarboxylic Acids and Levoglucosan in Fine Particles in the Kanto Plain, Japan, for Source Apportionment of Organic Aerosols

Category: Articles

Volume: 10 | Issue: 3 | Pages: 282-291
DOI: 10.4209/aaqr.2009.11.0075
PDF | RIS | BibTeX

Kimiyo Kumagai 1,2, Akihiro Iijima1,3, Misato Shimoda1, Yoshinori Saitoh1, Kunihisa Kozawa1, Hiroyuki Hagino4, Kazuhiko Sakamoto2,5

  • 1 Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052, Japan
  • 2 Department of Environmental Science and Technology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan
  • 3 Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan
  • 4 Japan Automobile Research Institute, 2530 Karima, Tsukuba, Ibaraki 305-0822, Japan
  • 5 Institute for Environmental Science and Technology, Saitama University, 255 Shimo-Okubo, Sakura, Saitama 338-8570, Japan


Fine particles were collected at a suburban site in the inland Kanto plain, Japan, in the spring and winter of 2007, and the summer of 2008. Organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), inorganic ions, and water-soluble organic compounds (dicarboxylic acids and levoglucosan) were analyzed. The WSOC/OC ratio was the highest in summer, followed by in spring, suggesting that organic aerosols were influenced by aging. The concentrations of total diacids (C2–C9) in spring and summer were higher than in winter. In each season, WSOC showed a strong positive correlation with the total diacids. Levoglucosan, which is recognized as a biomass burning tracer, was observed in a considerably higher concentration in winter than in spring or summer. In winter, WSOC also showed a strong positive correlation with levoglucosan. These results indicate that secondary formation is important as a source of WSOC and OC especially in the warm seasons, although emissions from biomass burning also contribute to WSOC in winter. By using the combination of source profile for biomass burning emission and EC tracer method, OC derived from biomass combustion in winter was calculated to be 47% of OC and OC derived from secondary formation in summer was calculated to be 75% of OC.


Organic carbon Water-soluble organic carbon Secondary formation Biomass burning

Related Article

Chemical Characterization of Wintertime Aerosols over Islands and Mountains in East Asia: Impacts of the Continental Asian Outflow

Shantanu Kumar Pani, Chung-Te Lee , Charles C.-K. Chou, Kojiro Shimada, Shiro Hatakeyama, Akinori Takami, Sheng-Hsiang Wang, Neng-Huei Lin
Volume: 17 | Issue: 12 | Pages: 3006-3036
DOI: 10.4209/aaqr.2017.03.0097
PDF | Supplemental material

Evaluation of δ13C in Carbonaceous Aerosol Source Apportionment at a Rural Measurement Site

Johan Martinsson , August Andersson, Moa K. Sporre, Johan Friberg, Adam Kristensson, Erik Swietlicki, Pål-Axel Olsson, Kristina Eriksson Stenström
Volume: 17 | Issue: 8 | Pages: 2081-2094
DOI: 10.4209/aaqr.2016.09.0392
PDF | Supplemental material

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062