Articles online

Application of a Combined Model to Study the Source Apportionment of PM10 in Taiyuan, China

Category: Articles

Volume: 10 | Issue: 2 | Pages: 177-184
DOI: 10.4209/aaqr.2009.09.0058
PDF | RIS | BibTeX

Fang Zeng1, Guo-Liang Shi1, Xiang Li1,2, Yin-Chang Feng 1, Xiao-Hui Bi1, Jian-Hui Wu1, Yong-Hua Xue1

  • 1 State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
  • 2 Department of Computer Science, University of Georgia, Athens, GA, USA


Twenty four-hour averaged concentrations of ambient PM10 were collected in Taiyuan, China from April 2001 to January 2002. A sum of 14 chemical species in PM10 was analyzed and a combined receptor model (PCA/MLR-CMB) was applied to this speciation data to determine the contributions of major source categories. On stage 1, two factors were extracted by Principle Component Analysis/Multiple Linear Regression (PCA/MLR), while some unknown sources were excluded from the model as un-extracted factors. Each factor might contain more than one actual source categories and was identified as extracted complex source (EC-source). The actual source categories contained in each EC-source were investigated according to the factor loadings and emission inventory. On stage 2, the two EC-sources were separately used as new receptors, and their corresponding actual sources were apportioned by Chemical Mass Balance (CMB). Although near colinearity existing in some source profiles, a total of eight sources were still well estimated: resuspended dust (about 26%), coal combustion (about 18%), cement dust (about 5%), steel manufacture (about 12%), soil dust (about 7%), vehicle exhaust (about 13%), secondary sulfate (about 12%) and secondary nitrate (about 4%). The combined model resolved 97% of PM10 mass concentrations and the evaluation analysis showed the results obtained by the combined model were reasonable.


Receptor model PCA/MLR-CMB PM10 Source appointment Coefficient of divergence

Related Article

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob
Volume: 12 | Issue: 1 | Pages: 1-7
DOI: 10.4209/aaqr.2011.09.0150