Articles online

Characteristics and Receptor Modeling of Atmospheric PM2.5 at Urban and Rural Sites in Pingtung, Taiwan

Category: Articles

Volume: 8 | Issue: 2 | Pages: 112-129
DOI: 10.4209/aaqr.2007.09.0039
PDF | RIS | BibTeX

W. C. Wang1, K. S. Chen 1, S. J. Chen2, C. C. Lin3, J. H. Tsai2, C. H. Lai4, S. K. Wang1

  • 1 Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, ROC
  • 2 Department of Environmental Science and Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
  • 3 Sustainable Environment Research Center, National Cheng Kung University, Tainan 70101, Taiwan, ROC
  • 4 Department of Nursing, Central Taiwan University of Science and Technology, Taichung 40601, Taiwan, ROC


Suspended particles of PM2.5 in air were sampled concurrently at an urban site and a rural site in Pingtung County in southern Taiwan, in the spring, the summer and the fall of 2005. All samples were analyzed to identify eight water-soluble ions, carbonaceous contents, and 19 metal elements. Measurements reveal that the overall means of PM10 (and PM2.5) are 59.2 (47.4) μg/m3 at Pingtung (urban) site, and 63.6 (45.7) μg/m3 at Chao-Chou (rural) site. Although both sites exhibited strong correlations (R = 0.98 at Pingtung, and R = 0.78 at Chao-Chou) between PM10 and PM2.5 masses, the mean PM2.5/PM10 ratio was 0.81 at Pingtung, higher than 0.68 at Chao-Chou, suggesting that relatively large bare lands and outdoor burning on farms may have caused more coarse particles to be present in PM2.5 at a rural site (Chao-Chou) than at an urban site (Pingtung). Results of CMB (chemical mass balance) modeling show that the main contributors to PM2.5 mass at Pingtung are vehicle exhaust (49.3–62.4%) and secondary aerosols (SO42–, NO3 and NH4+) (31.2–37.8%), while those at Chao-Chou are the outdoor burning (25.3–50.4%) of agricultural waste, secondary aerosols (27.2–34.3%) and vehicle exhaust (12.0–26.9%), depending on the seasons.


PM2.5 Water-soluble ions Carbonaceous species Receptor modeling CMB analysis

Related Article

Source Apportionment of PM2.5 Particles: Influence of Outdoor Particles on Indoor Environment of Schools Using Chemical Mass Balance

Gopinath Kalaiarasan, Raj Mohan Balakrishnan , Neethu Anitha Sethunath, Sivamoorthy Manoharan
Volume: 17 | Issue: 2 | Pages: 616-625
DOI: 10.4209/aaqr.2016.07.0297
PDF | Supplemental material

Distribution and Sources of Atmospheric Polycyclic Aromatic Hydrocarbons at an Industrial Region in Kaohsiung, Taiwan

Yi-Chieh Lai , Cheng-Hsien Tsai, Ying-Liang Chen, Guo-Ping Chang-Chien
Volume: 17 | Issue: 3 | Pages: 776-787
DOI: 10.4209/aaqr.2016.11.0482

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062