OPEN ACCESS

Articles online

Particle Deposition in Human Respiratory Tract: Effect of Water-Soluble Fraction

Category: Articles

Volume: 6 | Issue: 4 | Pages: 360-379
DOI: 10.4209/aaqr.2006.07.0004
PDF | RIS | BibTeX

Suresh K. Varghese 1, S. Gangamma2

  • 1 Department of Civil Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, 575 025, India
  • 2 Department of Chemical Engineering, National Institute of Technology Karnataka, Surathkal, Karnataka, India, 575 025, India

Abstract

In the nearly saturated human respiratory tract, the presence of water-soluble substances in inhaled aerosols can cause change in the size distribution of particles. This consequently alters the lung deposition profiles of the inhaled airborne particles. The magnitude of particle deposition in the lung is affected by the soluble component present in the particle. This is estimated by a numerical model. The model solves the condensation growth equation to determine the size evolution of respirable particles within the human respiratory tract. The water uptake by the particles in the respiratory tract results in change of size and density of the particles, and these changes are incorporated for estimating the particle deposition efficiency. The model results are compared with experimental results of sodium chloride particles. The model reproduces the major features of the experimental data. The simulations indicate that the particle can grow up to two times or more of its original size due to water uptake, depending on the quantity of the soluble matter it carries and thus can have significant effect on particle deposition efficiency. The study investigated the effect of soluble compounds in estimating total and regional lung dose of ambient particulate matter measured in Mumbai, India. The particle mass size distribution and composition considered for the ambient particulate matter, the variation in the total mass dose due to the growth was modest. But, the regional lung dose was significantly affected by the hygroscopic growth.

Keywords

Atmospheric particulate matter Lung deposition Hygroscopic growth


Related Article

Impact of Relative Humidity and Water Soluble Constituents of PM2.5 on Visibility Impairment in Beijing, China

Jing Chen , Shasha Qiu, Jing Shang, Ossima M.F. Wilfrid, Xingang Liu, Hezhong Tian, Johan Boman
Volume: 14 | Issue: 1 | Pages: 260-268
DOI: 10.4209/aaqr.2012.12.0360
PDF

Critical Emissions from the Largest On-Road Transport Network in South Asia

Saroj Kumar Sahu , Gufran Beig, Neha Parkhi
Volume: 14 | Issue: 1 | Pages: 135-144
DOI: 10.4209/aaqr.2013.04.0137
PDF

Ambient Air Quality during Diwali Festival over Kolkata – A Mega-City in India

A. Chatterjee , C. Sarkar, A. Adak, U. Mukherjee, S.K. Ghosh, S. Raha
Volume: 13 | Issue: 3 | Pages: 1133-1144
DOI: 10.4209/aaqr.2012.03.0062
PDF

Exploring the Variation between EC and BC in a Variety of Locations

Gbenga Oladoyin Salako, Philip K. Hopke , David D. Cohen, Bilkis A. Begum, Swapan K. Biswas, Gauri Girish Pandit, Yong-Sam Chung, Shamsiah Abd Rahman, Mohd Suhaimi Hamzah, Perry Davy, Andreas Markwitz, Dagva Shagjjamba, Sereeter Lodoysamba, Wanna Wimolwattanapun, Supamatthree Bunprapob
Volume: 12 | Issue: 1 | Pages: 1-7
DOI: 10.4209/aaqr.2011.09.0150
PDF
;