About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 14, No. 2, March 2014, Pages 515-521 PDF(657 KB)  
doi: 10.4209/aaqr.2013.06.0227   

Hydrogen Bonded Pyridine Dimer: A Possible Intermediate in the Electrocatalytic Reduction of Carbon Dioxide to Methanol

Yong Yan, Jing Gu, Andrew B. Bocarsly

Frick Laboratory, Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

 

Abstract

 

Previously, electrogenerated pyridinyl was implicated as a catalyst for the reduction of CO2 to methanol. However, recent quantum mechanical calculations of both the homogeneous redox potential for the pyridinium/pyridinyl redox couple (900 mV more negative than experimentally reported) and the pKa of the reduced pyridinyl species (~27) have led to the proposal that the homogeneous reduction of pyridinium does not play a role in the observed catalytic reduction of CO2 to methanol. In contrast, a more complete consideration of the reaction including the realization that pyridinium reduction is tightly coupled to H2 evolution, produces a calculated redox potential in agreement with the experimental findings. In reexamining this system, it is found that aqueous solutions containing a near equimolar mixture of pyridine and pyridinium (i.e., solution pH near the pyridinium pKa = 5.2) contain a substantial concentration of a hydrogen-bonded dimer formed by the generation of a N-H•••N bond containing one strong NH bond and one elongated NH bond. This species has been identified by X-ray diffraction of crystals grown in aqueous media from pyridine/pyridinium mixtures, and can be observed directly in solution using Raman spectroscopy. DFT (density functional theory) calculations indicate that the pKa for this species is ~22, a value that is consistent with a proton exchange capability. This suggests that this hydrogen bonded dimer may be the pre-electrocatalyst for the observed activation of CO2.

 

 

Keywords: CO2 sequestration and conversion; Catalyst; Electrochemistry; Pyridinium.

 

 

Copyright © 2009-2014 AAQR All right reserved.