About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 15, No. 6, November 2015, Pages 2200-2211 PDF(530 KB)  
doi: 10.4209/aaqr.2015.04.0257   

Chemical Composition and Light Extinction Contribution of PM2.5 in Urban Beijing for a 1-Year Period

Huanbo Wang1, Mi Tian1, Xinghua Li2, Qing Chang2, Junji Cao3, Fumo Yang1, Yongliang Ma4, Kebin He

1 Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
2 School of Chemistry and Environment, Beihang University, Beijing 100191, China
3 Key Lab of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China
4 State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 100084, China

 

Highlights
  • The extinction was discussed over four seasons and different AQI levels.
  • (NH4)2SO4 and NH4NO3 are the main contributors to bext.
  • The reduction of SNA could be more effective in improving visibility.

Abstract

 

Daily PM2.5 samples were collected in Beijing across four consecutive seasons from June 2012 to April 2013. Major water-soluble inorganic ions, carbonaceous species and elements were analyzed to investigate their temporal variations and evaluate their contributions to visibility impairment over different seasons and under different pollution levels. The mass concentrations of PM2.5 ranged from 4.3 to 592.4 µg m–3, with an annual average of 112.4 ± 94.4 µg m–3. The predominant components of PM2.5 were secondary inorganic ions (NH4+, NO3 and SO42–) and carbonaceous compounds, which accounted for 45.9% and 24.1% of the total PM2.5 mass, respectively. Distinct seasonal variation was observed in the mass concentrations and chemical components of PM2.5. The average mass concentrations of PM2.5 were the highest in winter, followed by spring, and lowest in autumn. Light extinction coefficients (bext) were discussed over four seasons. (NH4)2SO4 was the largest contributor (28.8%) to bext, followed by NH4NO3 (24.4%), organic matter (19.5%), elemental carbon (7.4%), and coarse mass (7.2%), while fine soil, sea salt, NO2 and Rayleigh made minor contributions, together accounting for 12.7% of bext. During the polluted periods, the contributions of (NH4)2SO4 and NH4NO3 to bext increased dramatically. Therefore, in addition to control primary particulate emissions, the reduction of their precursors like SO2, NOx and NH3 could effectively improve air quality and visibility in Beijing.

 

 

Keywords: Chemical composition; Reconstructed light extinction coefficient; Visibility; PM2.5.

 

 

Copyright © 2009-2014 AAQR All right reserved.