About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 11, No. 5, October 2011, Pages 487-496 PDF(740 KB)  
doi: 10.4209/aaqr.2011.05.0057   

A Low Pressure Drop Preseparator for Elimination of Particles Larger than 450 nm

C. Asbach1, H. Fissan1,2, H. Kaminski1, T.A.J. Kuhlbusch1,2, D.Y.H. Pui3, H. Shin3,4, H.G. Horn5, T. Hase6

1 Institute of Energy and Environmental Technology (IUTA) e.V., 47229 Duisburg, Germany
2 Center for Nanointegration Duisburg-Essen (CeNIDE), 47057 Duisburg
3 University of Minnesota, Minneapolis, MN 55455, USA
4 now at: KOTEC, Bukgu, Ulsan 68337, Korea
5 TSI GmbH, 52068 Aachen, Germany
6 TSI Inc., Shoreview, MN 55126, USA

 

Abstract

 

Measurement techniques which allow the detection of airborne nanoparticles are of great interest for e.g. exposure monitoring and quality control during nanoparticle production. An increasing number of commercial devices use a unipolar diffusion charger to charge the particles and determine the nanoparticle concentration and sometimes size. The analysis however may be biased by the presence of large particles. We therefore developed a preseparator that removes particles larger than 450 nm, i.e the minimum in the range of particle lung deposition curves, but only causes a low pressure drop. The preseparator uses a total flow rate of 2.5 L/min and consists of two stages. The first stage is a virtual impactor that removes particles larger than approximately 1 µm with a minor flow of 1 L/min. Particles above 450 nm are removed from the remaining 1.5 L/min in the cyclone of the second stage. The combination of a cyclone with a virtual impactor was shown to reduce the pressure drop of the preseparator from 8.1 to 5.6 kPa compared with a cyclone alone and improve the sharpness of the separation curve for cut-off diameters around 450 nm. Furthermore the virtual impactor extends the cleaning intervals of the preseparator, because large particles are no longer deposited in the cyclone. Eventually the preseparator was tested with an opposed flow diffusion charger and it was shown that particle charging is not affected by the pressure drop.

 

 

Keywords: Cyclone; Virtual impactor; Diffusion charger; Nanoparticle.

 

 

Copyright © 2009-2014 AAQR All right reserved.