About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 10, No. 3, June 2010, Pages 219-230 PDF(309 KB)  
doi: 10.4209/aaqr.2009.10.0068   

Characteristics and Sources of Carbonaceous, Ionic, and Isotopic Species of Wintertime Atmospheric Aerosols in Kathmandu Valley, Nepal

Kabindra M. Shakya1,2, Luke D. Ziemba2,3, Robert J. Griffin1,2

1 Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, TX, 77005
2 Climate Change Research Center, University of New Hampshire, Durham, NH, 03824
3 National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, 23681

 

Abstract

 

To investigate the air pollution from aerosols in Kathmandu during winter, bulk aerosol samples were collected during winter 2007–2008 to characterize carbonaceous and ionic species and carbon and nitrogen isotopes. This study illustrates the applications of carbon and nitrogen isotope data for characterizing aerosols and their implications for identifying sources that were inconsistent with the results for the carbonaceous and ionic aerosols. Mean concentrations of organic carbon (OC), elemental carbon (EC), and water soluble organic carbon (WSOC) in Kathmandu during the period were 20.02 ± 6.59 (1σ), 4.48 ± 1.17, and 10.09 ± 3.64 µgC/m3, respectively. Elemental carbon and OC were correlated (R2 = 0.56), likely indicating common sources for both species, as well as for the precursors that led to the formation of secondary organic carbon (SOC). The mean estimated SOC contribution to OC was 31%, suggesting that local emission is more important than transport and processing during winter in Kathmandu. On average, 50% of the OC was water soluble, and the correlation of SOC with WSOC (R2 = 0.66) suggests that the majority of SOC and some primary organic carbon (POC) were water soluble in Kathmandu. The mean δ13C of -25.74 ± 0.19‰ observed in aerosols of Kathmandu confirms consistent anthropogenic sources such as fossil fuel combustion. Heavier carbon also was observed to be associated with the water-soluble fraction of OC in aerosols. The mean δ15N of 9.45 ± 0.87‰ suggests the limited influence of biomass burning and its strong correlation with crustal cations Ca2+ (R2 = 0.74, p < 0.05) and Mg2+ (R2 = 0.71, p < 0.05) indicates distant sources. Principal component analysis revealed four major sources/pathways for particles: local and vehicular emissions, secondary gas-to-particle conversion, aqueous processing, and dust transport, each explaining ~39, 23, 11, and 9% of the variance.

 

 

Keywords: Carbonaceous aerosols; Kathmandu; Ionic aerosols; Isotope ratios.

 

 

Copyright © 2009-2014 AAQR All right reserved.