About AAQR

Aims and Scope

Articles online
For contributors
Call for Papers
Guideline for the
Special Issue Proposal
Subscription
Information

Advertising

Contact Us
 
Search for  in   Search  Advanced search  

 

Volume 16, No. 3, March 2016, Pages 478-491 PDF(980 KB)  Supplementary MaterialPDFPDF (669 KB)
doi: 10.4209/aaqr.2015.03.0197   

Aromatic Hydrocarbons and Halocarbons at a Mountaintop in Southern China

Minmin Yang1, Yan Wang1, Jianmin Chen1, Hongli Li2, Yuhua Li2

1 School of Environment Science and Engineering, Shandong University, Jinan, Shandong 250100, China
2 Shandong Environmental Monitoring Center, Jinan, Shandong 250101, China

 

Highlights
  • The sampling site is located on a mountain surrounded with industrial districts.
  • Seasonal variations of aromatic hydrocarbons and halocarbons in spring and summer.
  • OH loss rate and ozone formation potential of aromatic hydrocarbons are analyzed.
  • The influence of long-range transport on the atmosphere is demonstrated.

Abstract

 

In this study, 45 ambient samples were collected in the summer of 2011 and spring of 2012 on Mount Lushan. The concentrations and seasonal distributions of aromatic hydrocarbons and halocarbons were measured and discussed. Moderate concentrations of individual species were found compared with other mountain sites; however, the measured concentrations were much lower than the values reported in cities. For aromatic hydrocarbons, benzene and m/p-xylene were the most abundant species in the spring, while benzene and toluene exhibited the largest contributions in the summer. For halocarbons, the concentrations of 1,2,4-trichlorobenzene, dichlorodifluoromethane and chloromethane were higher than other gases measured in the spring; and dichlorodifluoromethane and chloromethane contributed largest in the summer. The OH loss rates demonstrated that 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene were the dominant aromatic hydrocarbons for OH loss rates in the spring, while styrene and toluene contributed the largest to reactivity in the summer. For the ozone formation potential (OFP), 1,2,4-trimethylbenzene and m/p-xylene accounted for the largest fraction of the OFPs in the spring (24.3% and 23.7%), while toluene was the most abundant source of OFP (i.e., 43.7%) in the summer. M/p-xylene exhibited large contributions to OFP in both spring and summer (23.7% and 19.2%) of the OFPs. The T/B (0.80 and 0.73 in spring and summer respectively) ratios indicated that the sampled air masses were primarily influenced by automotive emissions. The 36-h backward trajectories of the sampled air masses and the corresponding daily concentrations of individual species suggested that long-range transport had a large effect on the atmosphere at the sampling site.

 

 

Keywords: Aromatic hydrocarbons; Halocarbons; Reactivity; OFP; Backward trajectories.

 

 

Copyright © 2009-2014 AAQR All right reserved.